| L(s) = 1 | + 3-s − 2·5-s + 2·7-s + 9-s − 2·15-s + 10·17-s + 2·21-s − 6·25-s + 27-s − 4·35-s + 4·37-s + 10·41-s − 4·43-s − 2·45-s − 4·47-s − 3·49-s + 10·51-s + 16·59-s + 2·63-s + 20·67-s − 6·75-s − 12·79-s + 81-s − 12·83-s − 20·85-s + 2·89-s + 6·101-s + ⋯ |
| L(s) = 1 | + 0.577·3-s − 0.894·5-s + 0.755·7-s + 1/3·9-s − 0.516·15-s + 2.42·17-s + 0.436·21-s − 6/5·25-s + 0.192·27-s − 0.676·35-s + 0.657·37-s + 1.56·41-s − 0.609·43-s − 0.298·45-s − 0.583·47-s − 3/7·49-s + 1.40·51-s + 2.08·59-s + 0.251·63-s + 2.44·67-s − 0.692·75-s − 1.35·79-s + 1/9·81-s − 1.31·83-s − 2.16·85-s + 0.211·89-s + 0.597·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.227787068\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.227787068\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.473682014229751997405731452080, −8.224038304596750028251763592796, −7.86177920742879026993859900497, −7.57906802187173278880300395572, −7.12244226827991771808405363934, −6.47898459061222374366557338066, −5.71594502551140744667761514086, −5.47997274244345254376344070134, −4.83635502235543271892438016303, −4.13193994245512421721334201867, −3.80657942962184764212042185110, −3.26337563107656564785483163957, −2.56755017168898129584163300871, −1.72766775935589925050008072415, −0.883344151989972142699671395578,
0.883344151989972142699671395578, 1.72766775935589925050008072415, 2.56755017168898129584163300871, 3.26337563107656564785483163957, 3.80657942962184764212042185110, 4.13193994245512421721334201867, 4.83635502235543271892438016303, 5.47997274244345254376344070134, 5.71594502551140744667761514086, 6.47898459061222374366557338066, 7.12244226827991771808405363934, 7.57906802187173278880300395572, 7.86177920742879026993859900497, 8.224038304596750028251763592796, 8.473682014229751997405731452080