Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 43 x^{2} )( 1 + 10 x + 43 x^{2} )$ |
| $1 + 4 x + 26 x^{2} + 172 x^{3} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.348746511119$, $\pm0.776024765496$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $192$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2052$ | $3488400$ | $6342668388$ | $11704279680000$ | $21605697321954372$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $48$ | $1886$ | $79776$ | $3423502$ | $146969088$ | $6321285614$ | $271818640176$ | $11688200253598$ | $502592697365328$ | $21611482110373886$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 192 curves (of which all are hyperelliptic):
- $y^2=31 x^6+32 x^5+35 x^4+6 x^3+31 x^2+29 x+24$
- $y^2=23 x^6+30 x^5+27 x^4+39 x^3+8 x^2+30 x+19$
- $y^2=27 x^6+42 x^5+8 x^4+22 x^3+4 x^2+15 x+11$
- $y^2=4 x^6+39 x^5+27 x^4+6 x^3+20 x^2+37 x+32$
- $y^2=x^6+16 x^5+20 x^4+34 x^3+24 x^2+30 x+21$
- $y^2=8 x^6+12 x^5+7 x^4+14 x^3+28 x^2+28 x+40$
- $y^2=23 x^6+5 x^5+36 x^4+x^3+42 x^2+16 x+36$
- $y^2=16 x^6+9 x^5+36 x^4+13 x^3+38 x^2+16 x+21$
- $y^2=29 x^6+9 x^5+21 x^4+37 x^3+23 x^2+11 x+22$
- $y^2=11 x^6+33 x^5+38 x^4+33 x^3+15 x^2+27 x+38$
- $y^2=12 x^6+27 x^5+23 x^4+31 x^3+36 x^2+35 x+11$
- $y^2=4 x^6+23 x^5+32 x^4+x^3+4 x^2+27 x+41$
- $y^2=7 x^6+18 x^5+10 x^4+29 x^3+9 x^2+31 x+38$
- $y^2=x^6+33 x^5+9 x^4+37 x^3+4 x^2+7 x+11$
- $y^2=34 x^6+33 x^5+38 x^4+24 x^2+15 x+14$
- $y^2=30 x^6+3 x^5+22 x^4+6 x^3+21 x^2+33 x+14$
- $y^2=41 x^6+8 x^5+9 x^4+15 x^3+7 x^2+16 x+16$
- $y^2=34 x^6+41 x^5+26 x^4+28 x^3+8 x^2+33 x+38$
- $y^2=13 x^6+22 x^5+31 x^4+22 x^3+29 x^2+41 x+38$
- $y^2=24 x^6+22 x^5+36 x^4+19 x^3+14 x^2+7 x+24$
- and 172 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.ag $\times$ 1.43.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.43.aq_fq | $2$ | (not in LMFDB) |
| 2.43.ae_ba | $2$ | (not in LMFDB) |
| 2.43.q_fq | $2$ | (not in LMFDB) |