| L(s) = 1 | + 6·5-s + 7-s − 6·11-s − 5·13-s + 3·17-s + 5·19-s − 6·23-s + 17·25-s − 3·29-s − 4·31-s + 6·35-s + 7·37-s − 9·41-s + 11·43-s − 6·49-s − 3·53-s − 36·55-s − 12·59-s − 2·61-s − 30·65-s − 4·67-s − 11·73-s − 6·77-s + 8·79-s − 3·83-s + 18·85-s + 15·89-s + ⋯ |
| L(s) = 1 | + 2.68·5-s + 0.377·7-s − 1.80·11-s − 1.38·13-s + 0.727·17-s + 1.14·19-s − 1.25·23-s + 17/5·25-s − 0.557·29-s − 0.718·31-s + 1.01·35-s + 1.15·37-s − 1.40·41-s + 1.67·43-s − 6/7·49-s − 0.412·53-s − 4.85·55-s − 1.56·59-s − 0.256·61-s − 3.72·65-s − 0.488·67-s − 1.28·73-s − 0.683·77-s + 0.900·79-s − 0.329·83-s + 1.95·85-s + 1.58·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.189497559\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.189497559\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.211469072734228254881094324105, −8.540529748498782536428073311394, −8.122894446217551394961610084594, −7.59759424138145145550802511522, −7.48607038340698147979430867781, −7.26722923731764579120596515264, −6.40065857029883971006959080547, −6.02872741454883456473477649065, −5.93744544711787277488291436519, −5.45475254456205444290706415813, −5.19870034944944628669699954424, −4.84644616104127240115935144689, −4.52546400025608236812179144421, −3.64222240930301489433243536970, −3.05401588831580605209632507910, −2.69108871259168185271216552364, −2.29445083035991655851967402962, −1.79509243681495243575394538969, −1.58430333699523206065321024565, −0.51093835662034441770303603523,
0.51093835662034441770303603523, 1.58430333699523206065321024565, 1.79509243681495243575394538969, 2.29445083035991655851967402962, 2.69108871259168185271216552364, 3.05401588831580605209632507910, 3.64222240930301489433243536970, 4.52546400025608236812179144421, 4.84644616104127240115935144689, 5.19870034944944628669699954424, 5.45475254456205444290706415813, 5.93744544711787277488291436519, 6.02872741454883456473477649065, 6.40065857029883971006959080547, 7.26722923731764579120596515264, 7.48607038340698147979430867781, 7.59759424138145145550802511522, 8.122894446217551394961610084594, 8.540529748498782536428073311394, 9.211469072734228254881094324105