L(s) = 1 | + 3·5-s − 7-s − 3·11-s + 9·13-s − 8·19-s − 9·23-s + 25-s − 9·29-s − 7·31-s − 3·35-s + 20·37-s − 9·41-s + 15·43-s − 3·47-s − 6·49-s + 12·53-s − 9·55-s + 3·59-s − 3·61-s + 27·65-s − 15·67-s + 3·77-s − 9·79-s + 9·83-s − 9·91-s − 24·95-s + 9·97-s + ⋯ |
L(s) = 1 | + 1.34·5-s − 0.377·7-s − 0.904·11-s + 2.49·13-s − 1.83·19-s − 1.87·23-s + 1/5·25-s − 1.67·29-s − 1.25·31-s − 0.507·35-s + 3.28·37-s − 1.40·41-s + 2.28·43-s − 0.437·47-s − 6/7·49-s + 1.64·53-s − 1.21·55-s + 0.390·59-s − 0.384·61-s + 3.34·65-s − 1.83·67-s + 0.341·77-s − 1.01·79-s + 0.987·83-s − 0.943·91-s − 2.46·95-s + 0.913·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.102436503\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.102436503\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.908232751784930249004925663313, −8.527372643489556989156611687472, −8.275035971563430182137155196151, −7.67382767602000676938870667172, −7.66865494263718586508276394785, −6.94303417647998704289492004826, −6.32114591007521894302867344920, −6.18860462804275578083354241005, −5.97047881742530855964557493459, −5.60104207859355831702712068392, −5.40821641362998548598134488918, −4.42829677907149989989878773735, −4.15340819026377159399983559325, −3.90796459580385893500329199951, −3.35650094412952630935165014489, −2.70081615545845661844132755310, −2.22419312307647980801377462830, −1.86125593878462634305661982896, −1.40927311305932208209600465155, −0.43611719011865579707249644283,
0.43611719011865579707249644283, 1.40927311305932208209600465155, 1.86125593878462634305661982896, 2.22419312307647980801377462830, 2.70081615545845661844132755310, 3.35650094412952630935165014489, 3.90796459580385893500329199951, 4.15340819026377159399983559325, 4.42829677907149989989878773735, 5.40821641362998548598134488918, 5.60104207859355831702712068392, 5.97047881742530855964557493459, 6.18860462804275578083354241005, 6.32114591007521894302867344920, 6.94303417647998704289492004826, 7.66865494263718586508276394785, 7.67382767602000676938870667172, 8.275035971563430182137155196151, 8.527372643489556989156611687472, 8.908232751784930249004925663313