Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 3 x + 64 x^{2} + 183 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.368701278508$, $\pm0.702034611841$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{241})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $188$ |
| Isomorphism classes: | 188 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3972$ | $14299200$ | $51520017600$ | $191800374508800$ | $713298067917395412$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $65$ | $3841$ | $226982$ | $13852561$ | $844543205$ | $51519660838$ | $3142747145225$ | $191707330450561$ | $11694146092834142$ | $713342912412311401$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 188 curves (of which all are hyperelliptic):
- $y^2=40 x^6+3 x^5+24 x^4+29 x^3+16 x^2+59 x+32$
- $y^2=17 x^6+12 x^5+42 x^4+31 x^3+44 x^2+20 x+17$
- $y^2=16 x^6+60 x^5+60 x^4+40 x^3+28 x^2+37 x+14$
- $y^2=23 x^6+35 x^5+37 x^4+38 x^3+24 x^2+50 x+15$
- $y^2=45 x^6+43 x^5+20 x^4+17 x^3+32 x^2+9 x+40$
- $y^2=44 x^6+30 x^5+22 x^4+17 x^3+49 x^2+13 x+6$
- $y^2=30 x^6+19 x^5+17 x^4+40 x^3+25 x^2+11 x+39$
- $y^2=44 x^6+44 x^5+55 x^4+54 x^3+40 x^2+20 x+19$
- $y^2=25 x^6+34 x^5+33 x^4+15 x^3+43 x^2+7 x+30$
- $y^2=13 x^6+3 x^5+3 x^4+2 x^3+58 x^2+12 x+31$
- $y^2=27 x^5+21 x^4+32 x^3+32 x^2+25 x+40$
- $y^2=3 x^6+36 x^5+26 x^4+53 x^3+11 x^2+56 x+53$
- $y^2=35 x^6+34 x^5+41 x^4+12 x^3+32 x^2+33 x+12$
- $y^2=31 x^6+4 x^5+52 x^4+26 x^3+10 x+22$
- $y^2=44 x^6+7 x^5+25 x^4+52 x^3+12 x^2+48 x+26$
- $y^2=23 x^6+24 x^5+43 x^4+14 x^3+21 x^2+35 x+38$
- $y^2=7 x^6+27 x^5+53 x^4+17 x^3+35 x^2+17 x+34$
- $y^2=38 x^6+50 x^5+57 x^4+50 x^3+22 x^2+41 x+56$
- $y^2=22 x^6+26 x^5+7 x^4+40 x^3+28 x^2+24 x+2$
- $y^2=21 x^6+56 x^5+42 x^4+7 x^3+39 x^2+16 x+53$
- and 168 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{6}}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{241})\). |
| The base change of $A$ to $\F_{61^{6}}$ is 1.51520374361.auhtq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-723}) \)$)$ |
- Endomorphism algebra over $\F_{61^{2}}$
The base change of $A$ to $\F_{61^{2}}$ is the simple isogeny class 2.3721.ep_plo and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{241})\). - Endomorphism algebra over $\F_{61^{3}}$
The base change of $A$ to $\F_{61^{3}}$ is the simple isogeny class 2.226981.a_auhtq and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{241})\).
Base change
This is a primitive isogeny class.