L(s) = 1 | − 10·19-s + 12·29-s + 10·31-s + 24·41-s + 10·49-s − 12·59-s − 14·61-s + 24·71-s + 2·79-s + 24·89-s + 24·101-s + 14·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + 181-s + 191-s + ⋯ |
L(s) = 1 | − 2.29·19-s + 2.22·29-s + 1.79·31-s + 3.74·41-s + 10/7·49-s − 1.56·59-s − 1.79·61-s + 2.84·71-s + 0.225·79-s + 2.54·89-s + 2.38·101-s + 1.34·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.788461138\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.788461138\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.961674238755181288555351983914, −8.641376715022399568844818577490, −8.250100180163382364451055190830, −7.988040610800715474997577426807, −7.53765535799600435331485623999, −7.22263559902706455664882832677, −6.45021323580409776642391681038, −6.38043315588370698603746894730, −6.15580533544853977406048423001, −5.71924210767766422924781796538, −4.89264311052844638024133501894, −4.70153302287344898587962041331, −4.28316292310072506547373353798, −4.07376831333639093847210195477, −3.26878408038463140429288213741, −2.86139760477548922546611804063, −2.24121250919515878417891747214, −2.14309674741299694003115224713, −0.980092602062828765124024702493, −0.67521830249622127485093507196,
0.67521830249622127485093507196, 0.980092602062828765124024702493, 2.14309674741299694003115224713, 2.24121250919515878417891747214, 2.86139760477548922546611804063, 3.26878408038463140429288213741, 4.07376831333639093847210195477, 4.28316292310072506547373353798, 4.70153302287344898587962041331, 4.89264311052844638024133501894, 5.71924210767766422924781796538, 6.15580533544853977406048423001, 6.38043315588370698603746894730, 6.45021323580409776642391681038, 7.22263559902706455664882832677, 7.53765535799600435331485623999, 7.988040610800715474997577426807, 8.250100180163382364451055190830, 8.641376715022399568844818577490, 8.961674238755181288555351983914