| L(s) = 1 | + 2·2-s + 3·4-s + 2·5-s + 4·8-s + 4·10-s + 11-s + 6·13-s + 5·16-s − 5·17-s + 7·19-s + 6·20-s + 2·22-s + 4·23-s + 5·25-s + 12·26-s − 4·29-s − 12·31-s + 6·32-s − 10·34-s − 2·37-s + 14·38-s + 8·40-s + 3·41-s + 43-s + 3·44-s + 8·46-s + 10·50-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 3/2·4-s + 0.894·5-s + 1.41·8-s + 1.26·10-s + 0.301·11-s + 1.66·13-s + 5/4·16-s − 1.21·17-s + 1.60·19-s + 1.34·20-s + 0.426·22-s + 0.834·23-s + 25-s + 2.35·26-s − 0.742·29-s − 2.15·31-s + 1.06·32-s − 1.71·34-s − 0.328·37-s + 2.27·38-s + 1.26·40-s + 0.468·41-s + 0.152·43-s + 0.452·44-s + 1.17·46-s + 1.41·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7001316 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7001316 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(10.62472919\) |
| \(L(\frac12)\) |
\(\approx\) |
\(10.62472919\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.917983940601465354939741345583, −8.894016847431953400980822889631, −8.266326861712310932284682929211, −7.80115269011844376530276373581, −7.18847173992713337705876950338, −7.13654956025678900262641677957, −6.48426227974975914469126083330, −6.46198629453036784790016244634, −5.74800514234666326904050439052, −5.58957686407212049532789372439, −5.09183853714789162143657185009, −5.02337073875204599186372971155, −4.10036243895398022835611411951, −3.87245379280636323075064588547, −3.54758530838991231870481696749, −3.02792937841832216522233550271, −2.45039758087918415575607234136, −1.99728705025649764464269649188, −1.43025321675836320593810492964, −0.885080629689844153505684757162,
0.885080629689844153505684757162, 1.43025321675836320593810492964, 1.99728705025649764464269649188, 2.45039758087918415575607234136, 3.02792937841832216522233550271, 3.54758530838991231870481696749, 3.87245379280636323075064588547, 4.10036243895398022835611411951, 5.02337073875204599186372971155, 5.09183853714789162143657185009, 5.58957686407212049532789372439, 5.74800514234666326904050439052, 6.46198629453036784790016244634, 6.48426227974975914469126083330, 7.13654956025678900262641677957, 7.18847173992713337705876950338, 7.80115269011844376530276373581, 8.266326861712310932284682929211, 8.894016847431953400980822889631, 8.917983940601465354939741345583