Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 7 x + 59 x^{2} )^{2}$ |
$1 - 14 x + 167 x^{2} - 826 x^{3} + 3481 x^{4}$ | |
Frobenius angles: | $\pm0.349402864844$, $\pm0.349402864844$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $17$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2809$ | $12609601$ | $42549788176$ | $146883807310969$ | $511063198294506649$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $46$ | $3620$ | $207172$ | $12121764$ | $714849386$ | $42179749526$ | $2488650415934$ | $146830476384964$ | $8662996153183708$ | $511116753354284900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 17 curves (of which all are hyperelliptic):
- $y^2=31 x^6+16 x^5+40 x^4+55 x^3+x^2+43 x+26$
- $y^2=44 x^6+26 x^5+22 x^4+13 x^3+22 x^2+26 x+44$
- $y^2=x^6+29 x^5+45 x^4+34 x^3+32 x^2+25 x+14$
- $y^2=37 x^6+58 x^5+33 x^4+27 x^3+44 x^2+35 x+20$
- $y^2=40 x^6+x^5+43 x^4+41 x^3+27 x^2+10 x+27$
- $y^2=38 x^6+35 x^5+20 x^4+44 x^3+20 x^2+35 x+38$
- $y^2=10 x^6+37 x^5+51 x^4+14 x^3+58 x^2+54$
- $y^2=23 x^6+38 x^5+50 x^4+53 x^3+51 x^2+36 x+31$
- $y^2=30 x^6+5 x^5+47 x^4+48 x^3+x^2+17 x+15$
- $y^2=37 x^6+44 x^5+25 x^3+44 x+37$
- $y^2=54 x^6+29 x^5+33 x^4+12 x^3+26 x^2+27 x+9$
- $y^2=16 x^6+12 x^5+20 x^4+19 x^3+10 x^2+38 x+42$
- $y^2=20 x^6+50 x^5+33 x^4+5 x^3+33 x^2+50 x+20$
- $y^2=53 x^6+6 x^5+18 x^4+43 x^3+26 x^2+48 x+43$
- $y^2=2 x^6+35 x^5+57 x^4+18 x^3+57 x^2+35 x+2$
- $y^2=34 x^6+5 x^5+x^4+52 x^3+30 x^2+36 x+53$
- $y^2=33 x^6+52 x^5+17 x^4+33 x^3+24 x^2+50 x+51$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The isogeny class factors as 1.59.ah 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-187}) \)$)$ |
Base change
This is a primitive isogeny class.