| L(s) = 1 | + 2·2-s + 3·4-s − 2·5-s + 4·8-s − 4·10-s + 2·11-s − 4·13-s + 5·16-s + 2·17-s + 4·19-s − 6·20-s + 4·22-s + 8·23-s − 8·26-s + 10·29-s − 4·31-s + 6·32-s + 4·34-s − 8·37-s + 8·38-s − 8·40-s + 6·41-s + 10·43-s + 6·44-s + 16·46-s − 6·47-s − 12·52-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 3/2·4-s − 0.894·5-s + 1.41·8-s − 1.26·10-s + 0.603·11-s − 1.10·13-s + 5/4·16-s + 0.485·17-s + 0.917·19-s − 1.34·20-s + 0.852·22-s + 1.66·23-s − 1.56·26-s + 1.85·29-s − 0.718·31-s + 1.06·32-s + 0.685·34-s − 1.31·37-s + 1.29·38-s − 1.26·40-s + 0.937·41-s + 1.52·43-s + 0.904·44-s + 2.35·46-s − 0.875·47-s − 1.66·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7001316 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7001316 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(7.098903789\) |
| \(L(\frac12)\) |
\(\approx\) |
\(7.098903789\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.800911124345058176243621146240, −8.755145885986163709020496053805, −8.116574850442499993552062840304, −7.83167003027978762715563741260, −7.31912267798861694119669611148, −7.02882458394887368259012825011, −6.75193310332819392767837271458, −6.58745089550047259641725770613, −5.57163083367294064065627507811, −5.55427470469490270124761544967, −5.10644225656728019526561751694, −4.83041716297234678835200908330, −4.15797439492400384816457250208, −3.89951477565617919270596375324, −3.55217522493453695792196316965, −3.05740726886877631625062705561, −2.36358404367415795768555100648, −2.36286529542835151260423417564, −1.11467340249133286939919662557, −0.813923008366618771072832583005,
0.813923008366618771072832583005, 1.11467340249133286939919662557, 2.36286529542835151260423417564, 2.36358404367415795768555100648, 3.05740726886877631625062705561, 3.55217522493453695792196316965, 3.89951477565617919270596375324, 4.15797439492400384816457250208, 4.83041716297234678835200908330, 5.10644225656728019526561751694, 5.55427470469490270124761544967, 5.57163083367294064065627507811, 6.58745089550047259641725770613, 6.75193310332819392767837271458, 7.02882458394887368259012825011, 7.31912267798861694119669611148, 7.83167003027978762715563741260, 8.116574850442499993552062840304, 8.755145885986163709020496053805, 8.800911124345058176243621146240