Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 22 x + 232 x^{2} - 1298 x^{3} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.151912498280$, $\pm0.316979219896$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.6488384.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $40$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2394$ | $12051396$ | $42338974482$ | $146914663983696$ | $511134511471541874$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $3462$ | $206150$ | $12124310$ | $714949138$ | $42180537222$ | $2488652139298$ | $146830459226014$ | $8662996060679030$ | $511116754445989302$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=30 x^6+20 x^5+8 x^3+49 x^2+57 x+19$
- $y^2=31 x^6+6 x^5+51 x^4+33 x^3+24 x^2+44 x+11$
- $y^2=18 x^6+15 x^5+35 x^4+5 x^3+29 x^2+49 x+24$
- $y^2=44 x^6+29 x^5+48 x^4+23 x^3+45 x^2+54 x+28$
- $y^2=19 x^6+11 x^5+40 x^4+20 x^3+13 x^2+36 x+8$
- $y^2=52 x^6+52 x^5+17 x^4+33 x^3+57 x^2+10 x+47$
- $y^2=40 x^6+33 x^5+41 x^4+48 x^3+x^2+3 x+54$
- $y^2=6 x^6+18 x^5+58 x^4+45 x^3+9 x^2+13 x+46$
- $y^2=3 x^6+51 x^5+19 x^4+50 x^3+57 x^2+3 x+27$
- $y^2=52 x^6+12 x^5+58 x^4+13 x^3+55 x+14$
- $y^2=37 x^6+32 x^5+27 x^4+24 x^3+17 x^2+45 x+25$
- $y^2=23 x^6+24 x^5+41 x^4+50 x^3+9 x^2+25 x+23$
- $y^2=43 x^6+26 x^5+16 x^4+33 x^3+13 x^2+58 x+20$
- $y^2=58 x^6+9 x^5+52 x^4+37 x^3+52 x^2+33 x+54$
- $y^2=44 x^6+26 x^5+57 x^4+39 x^3+40 x^2+34 x+29$
- $y^2=44 x^6+13 x^5+49 x^4+32 x^3+23 x^2+40$
- $y^2=54 x^6+29 x^5+15 x^4+23 x^3+15 x^2+50 x+47$
- $y^2=30 x^6+58 x^5+22 x^4+48 x^3+11 x^2+16$
- $y^2=33 x^6+42 x^5+24 x^4+43 x^3+7 x^2+10 x+23$
- $y^2=34 x^6+15 x^5+47 x^4+21 x^3+49 x^2+58 x+43$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is 4.0.6488384.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.w_iy | $2$ | (not in LMFDB) |