Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 6 x + 115 x^{2} - 402 x^{3} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.330944877001$, $\pm0.544702477561$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.4560528.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $120$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4197$ | $21039561$ | $90653386896$ | $406009687063401$ | $1822855538165657277$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $62$ | $4684$ | $301412$ | $20148244$ | $1350138242$ | $90458181574$ | $6060704825510$ | $406067678145508$ | $27206535039908636$ | $1822837806520714204$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=56 x^6+51 x^5+55 x^4+23 x^3+47 x^2+37 x+58$
- $y^2=x^6+6 x^5+50 x^4+61 x^3+52 x^2+16 x+63$
- $y^2=28 x^6+37 x^5+38 x^4+36 x^3+9 x^2+29 x+44$
- $y^2=x^6+53 x^5+27 x^4+x^3+46 x^2+55 x+42$
- $y^2=23 x^6+6 x^5+18 x^4+5 x^3+50 x^2+15 x+11$
- $y^2=61 x^6+63 x^5+14 x^4+62 x^3+33 x^2+46 x+55$
- $y^2=33 x^6+61 x^5+62 x^4+32 x^3+64 x^2+36 x+35$
- $y^2=15 x^6+22 x^5+23 x^4+49 x^3+49 x^2+32 x+9$
- $y^2=29 x^6+35 x^5+5 x^4+65 x^3+43 x^2+53 x+47$
- $y^2=45 x^6+55 x^5+53 x^4+18 x^3+4 x^2+6 x+31$
- $y^2=17 x^6+18 x^5+64 x^4+40 x^3+59 x^2+10 x+5$
- $y^2=20 x^6+31 x^5+4 x^4+44 x^3+61 x^2+61 x+24$
- $y^2=56 x^6+33 x^5+11 x^4+26 x^3+48 x^2+33 x+23$
- $y^2=10 x^6+15 x^5+24 x^4+55 x^3+39 x^2+26 x+47$
- $y^2=x^6+7 x^5+23 x^4+21 x^3+9 x^2+12 x+31$
- $y^2=58 x^6+36 x^5+30 x^4+55 x^3+14 x^2+15 x+63$
- $y^2=55 x^6+43 x^5+41 x^4+7 x^3+16 x^2+32 x+25$
- $y^2=17 x^6+56 x^5+18 x^4+16 x^3+60 x^2+9 x+31$
- $y^2=45 x^6+29 x^5+42 x^4+60 x^3+39 x^2+23 x+60$
- $y^2=59 x^6+29 x^5+64 x^4+18 x^3+24 x^2+44 x+50$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is 4.0.4560528.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.g_el | $2$ | (not in LMFDB) |