Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 20 x + 215 x^{2} - 1220 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.199705063640$, $\pm0.343962623824$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.12519696.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $18$ |
| Isomorphism classes: | 18 |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2697$ | $13962369$ | $51802562772$ | $191829671847081$ | $713360732182135377$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $42$ | $3752$ | $228222$ | $13854676$ | $844617402$ | $51520298222$ | $3142742940162$ | $191707324320868$ | $11694146125511862$ | $713342910292233752$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=23 x^6+25 x^5+24 x^4+5 x^3+47 x^2+59 x+30$
- $y^2=31 x^6+57 x^5+27 x^4+54 x^3+36 x^2+45 x+56$
- $y^2=24 x^6+36 x^5+12 x^4+5 x^3+8 x^2+3 x+54$
- $y^2=13 x^6+49 x^5+48 x^4+54 x^3+21 x^2+22 x+41$
- $y^2=35 x^6+19 x^5+40 x^4+23 x^3+36 x^2+2 x+42$
- $y^2=21 x^6+24 x^5+60 x^4+13 x^3+53 x^2+50 x+4$
- $y^2=53 x^6+9 x^5+54 x^4+40 x^3+16 x^2+52 x+9$
- $y^2=10 x^6+45 x^5+20 x^4+22 x^3+41 x^2+17 x+30$
- $y^2=7 x^6+32 x^5+48 x^4+51 x^3+9 x^2+13 x+30$
- $y^2=7 x^6+9 x^5+19 x^4+50 x^3+52 x^2+13 x+26$
- $y^2=40 x^6+60 x^5+21 x^4+29 x^3+9 x^2+45 x+32$
- $y^2=38 x^6+19 x^5+13 x^4+45 x^3+6 x^2+7 x+38$
- $y^2=43 x^6+24 x^5+14 x^4+7 x^3+28 x^2+41 x+30$
- $y^2=54 x^6+36 x^5+46 x^4+46 x^3+59 x^2+46 x+1$
- $y^2=51 x^6+31 x^5+39 x^4+57 x^3+28 x^2+34 x+23$
- $y^2=13 x^6+39 x^5+27 x^4+57 x^3+20 x^2+34 x+50$
- $y^2=37 x^6+7 x^5+50 x^3+40 x^2+29 x+15$
- $y^2=24 x^6+5 x^5+7 x^4+15 x^3+19 x^2+x+27$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.12519696.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.u_ih | $2$ | (not in LMFDB) |