| L(s) = 1 | − 2·2-s + 3·4-s + 5-s − 4·8-s − 2·10-s − 2·11-s − 2·13-s + 5·16-s + 7·19-s + 3·20-s + 4·22-s + 3·23-s + 5·25-s + 4·26-s − 8·29-s + 8·31-s − 6·32-s + 6·37-s − 14·38-s − 4·40-s − 12·41-s + 8·43-s − 6·44-s − 6·46-s + 16·47-s − 10·50-s − 6·52-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 3/2·4-s + 0.447·5-s − 1.41·8-s − 0.632·10-s − 0.603·11-s − 0.554·13-s + 5/4·16-s + 1.60·19-s + 0.670·20-s + 0.852·22-s + 0.625·23-s + 25-s + 0.784·26-s − 1.48·29-s + 1.43·31-s − 1.06·32-s + 0.986·37-s − 2.27·38-s − 0.632·40-s − 1.87·41-s + 1.21·43-s − 0.904·44-s − 0.884·46-s + 2.33·47-s − 1.41·50-s − 0.832·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7001316 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7001316 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.642915478\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.642915478\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.081625475546759282827077991691, −8.826585285347409452195513090994, −8.132468155162315697915566425840, −8.114375245403130292014712632340, −7.42742179468375629203185932962, −7.41395745203237461966689254447, −6.83366045478317561189287639576, −6.64275848245892408697667163400, −6.03643769234622137262394997516, −5.56355092750483524052143101460, −5.21999303492029263829623498340, −5.05587892203439246336886191609, −4.18165203317382792790840448651, −3.79645442311654491715841317564, −2.97130776362987681804488822422, −2.85909563204315196840018581742, −2.27343109450919242230066159046, −1.80071500542722033274808889208, −0.887805318346728249203421700831, −0.71761287465178612011908821990,
0.71761287465178612011908821990, 0.887805318346728249203421700831, 1.80071500542722033274808889208, 2.27343109450919242230066159046, 2.85909563204315196840018581742, 2.97130776362987681804488822422, 3.79645442311654491715841317564, 4.18165203317382792790840448651, 5.05587892203439246336886191609, 5.21999303492029263829623498340, 5.56355092750483524052143101460, 6.03643769234622137262394997516, 6.64275848245892408697667163400, 6.83366045478317561189287639576, 7.41395745203237461966689254447, 7.42742179468375629203185932962, 8.114375245403130292014712632340, 8.132468155162315697915566425840, 8.826585285347409452195513090994, 9.081625475546759282827077991691