Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 14 x + 107 x^{2} - 1246 x^{3} + 7921 x^{4}$ |
| Frobenius angles: | $\pm0.0994552104563$, $\pm0.567211456210$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{-10})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $216$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6769$ | $62877241$ | $495582208576$ | $3935615349656809$ | $31182439089648285649$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $76$ | $7940$ | $702982$ | $62726724$ | $5584188236$ | $496982134766$ | $44231329340204$ | $3936588921025924$ | $350356405947704758$ | $31181719935383898500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 216 curves (of which all are hyperelliptic):
- $y^2=48 x^6+7 x^5+63 x^4+64 x^3+36 x^2+83 x+40$
- $y^2=78 x^6+22 x^5+70 x^4+75 x^3+6 x^2+12 x+7$
- $y^2=31 x^6+71 x^5+41 x^4+77 x^3+17 x^2+61 x+62$
- $y^2=79 x^6+80 x^5+64 x^4+69 x^3+51 x^2+2 x+62$
- $y^2=67 x^6+75 x^5+81 x^4+28 x^3+41 x^2+62 x+50$
- $y^2=19 x^6+56 x^5+49 x^4+82 x^3+19 x^2+32 x+86$
- $y^2=74 x^6+58 x^5+20 x^4+11 x^3+x^2+18 x+9$
- $y^2=38 x^6+21 x^5+20 x^4+35 x^3+33 x^2+64 x+46$
- $y^2=78 x^6+47 x^5+8 x^4+58 x^3+87 x^2+12 x+27$
- $y^2=34 x^6+61 x^5+67 x^4+16 x^3+23 x^2+12 x+73$
- $y^2=41 x^6+56 x^5+14 x^4+8 x^2+47 x+86$
- $y^2=72 x^6+60 x^5+68 x^4+65 x^3+44 x^2+47 x+33$
- $y^2=44 x^6+30 x^5+32 x^4+12 x^3+29 x^2+87 x+34$
- $y^2=28 x^6+50 x^5+86 x^4+40 x^3+2 x^2+29 x+35$
- $y^2=54 x^6+3 x^5+56 x^4+85 x^3+78 x^2+31 x+13$
- $y^2=79 x^6+23 x^5+58 x^4+10 x^3+69 x^2+81 x+84$
- $y^2=41 x^6+26 x^5+54 x^4+45 x^3+56 x^2+48 x+64$
- $y^2=41 x^6+31 x^5+27 x^4+52 x^3+51 x^2+20 x+86$
- $y^2=9 x^6+62 x^5+48 x^4+21 x^3+36 x^2+39 x+71$
- $y^2=40 x^6+80 x^5+42 x^4+46 x^3+68 x^2+83 x+38$
- and 196 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{3}}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-10})\). |
| The base change of $A$ to $\F_{89^{3}}$ is 1.704969.abmg 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-10}) \)$)$ |
Base change
This is a primitive isogeny class.