L(s) = 1 | − 4·17-s + 2·25-s − 20·41-s − 6·49-s + 4·73-s + 12·89-s − 28·97-s − 4·113-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 6·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | − 0.970·17-s + 2/5·25-s − 3.12·41-s − 6/7·49-s + 0.468·73-s + 1.27·89-s − 2.84·97-s − 0.376·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.461·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.659419060185556688652600447029, −8.120861377745114095262652060409, −7.66290031684715219109380088279, −7.02040768550923387363137955424, −6.61907139542909577530501088742, −6.39408113550237778948715224326, −5.58017056580972558320541358952, −5.10220642781078545886602696158, −4.71955000823213590895002857444, −4.03739737234269307525350964101, −3.47817577765181009119187651197, −2.86813266448153326435766858426, −2.11425319901079415089435207612, −1.39661700422223217169569454597, 0,
1.39661700422223217169569454597, 2.11425319901079415089435207612, 2.86813266448153326435766858426, 3.47817577765181009119187651197, 4.03739737234269307525350964101, 4.71955000823213590895002857444, 5.10220642781078545886602696158, 5.58017056580972558320541358952, 6.39408113550237778948715224326, 6.61907139542909577530501088742, 7.02040768550923387363137955424, 7.66290031684715219109380088279, 8.120861377745114095262652060409, 8.659419060185556688652600447029