L(s) = 1 | + 2·3-s − 4-s − 8·7-s + 3·9-s − 2·11-s − 2·12-s + 16-s − 16·21-s − 6·25-s + 4·27-s + 8·28-s − 4·33-s − 3·36-s − 2·37-s − 20·41-s + 2·44-s + 16·47-s + 2·48-s + 34·49-s − 12·53-s − 24·63-s − 64-s + 8·67-s − 16·71-s − 4·73-s − 12·75-s + 16·77-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 1/2·4-s − 3.02·7-s + 9-s − 0.603·11-s − 0.577·12-s + 1/4·16-s − 3.49·21-s − 6/5·25-s + 0.769·27-s + 1.51·28-s − 0.696·33-s − 1/2·36-s − 0.328·37-s − 3.12·41-s + 0.301·44-s + 2.33·47-s + 0.288·48-s + 34/7·49-s − 1.64·53-s − 3.02·63-s − 1/8·64-s + 0.977·67-s − 1.89·71-s − 0.468·73-s − 1.38·75-s + 1.82·77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5963364 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5963364 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.756548328077528180920221813394, −8.624926173230220808284802219517, −7.930320865453923421292795144280, −7.71890607330340851619476618442, −7.11312083535605891530034365982, −6.96340648973417040504454268091, −6.32709397731986096593748348833, −6.29731647240851554488306559609, −5.64317062452078249439641754657, −5.27457426113303192810213900828, −4.71135698874134036670405787441, −3.97566984505735254407087801342, −3.79543703112668604570425583793, −3.44498672825448172100868436560, −2.83890622733191251305237013080, −2.80682950795614099661772242458, −2.05584823633687754317542694068, −1.27829423078473389956973388222, 0, 0,
1.27829423078473389956973388222, 2.05584823633687754317542694068, 2.80682950795614099661772242458, 2.83890622733191251305237013080, 3.44498672825448172100868436560, 3.79543703112668604570425583793, 3.97566984505735254407087801342, 4.71135698874134036670405787441, 5.27457426113303192810213900828, 5.64317062452078249439641754657, 6.29731647240851554488306559609, 6.32709397731986096593748348833, 6.96340648973417040504454268091, 7.11312083535605891530034365982, 7.71890607330340851619476618442, 7.930320865453923421292795144280, 8.624926173230220808284802219517, 8.756548328077528180920221813394