Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 78 x^{2} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.364937436951$, $\pm0.635062563049$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{10})\) |
Galois group: | $C_2^2$ |
Jacobians: | $249$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3560$ | $12673600$ | $42180193640$ | $146851740697600$ | $511116752654009000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3638$ | $205380$ | $12119118$ | $714924300$ | $42179853638$ | $2488651484820$ | $146830484531998$ | $8662995818654940$ | $511116752007376598$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 249 curves (of which all are hyperelliptic):
- $y^2=36 x^6+42 x^5+48 x^4+13 x^3+37 x^2+32 x+38$
- $y^2=39 x^6+6 x^5+58 x^4+29 x^3+19 x^2+14 x+46$
- $y^2=19 x^6+12 x^5+57 x^4+58 x^3+38 x^2+28 x+33$
- $y^2=5 x^6+34 x^5+42 x^4+20 x^3+27 x^2+32 x+15$
- $y^2=10 x^6+9 x^5+25 x^4+40 x^3+54 x^2+5 x+30$
- $y^2=47 x^6+18 x^5+4 x^4+3 x^3+45 x^2+39 x+34$
- $y^2=35 x^6+36 x^5+8 x^4+6 x^3+31 x^2+19 x+9$
- $y^2=38 x^6+53 x^5+35 x^4+41 x^3+39 x^2+14 x+5$
- $y^2=17 x^6+47 x^5+11 x^4+23 x^3+19 x^2+28 x+10$
- $y^2=37 x^6+23 x^5+47 x^4+16 x^3+34 x^2+51 x+26$
- $y^2=15 x^6+46 x^5+35 x^4+32 x^3+9 x^2+43 x+52$
- $y^2=58 x^6+54 x^5+55 x^4+29 x^3+46 x^2+2 x+17$
- $y^2=57 x^6+49 x^5+51 x^4+58 x^3+33 x^2+4 x+34$
- $y^2=57 x^6+56 x^5+54 x^4+43 x^3+34 x^2+21 x+30$
- $y^2=55 x^6+53 x^5+49 x^4+27 x^3+9 x^2+42 x+1$
- $y^2=27 x^6+31 x^5+51 x^4+26 x^3+36 x^2+52 x+18$
- $y^2=54 x^6+3 x^5+43 x^4+52 x^3+13 x^2+45 x+36$
- $y^2=21 x^6+45 x^5+14 x^4+12 x^3+50 x^2+52 x+50$
- $y^2=42 x^6+31 x^5+28 x^4+24 x^3+41 x^2+45 x+41$
- $y^2=30 x^6+8 x^5+28 x^4+32 x^3+21 x^2+2 x+57$
- and 229 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{10})\). |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.da 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-10}) \)$)$ |
Base change
This is a primitive isogeny class.