L(s) = 1 | + 2-s + 4-s − 5-s + 8-s − 4·9-s − 10-s − 4·13-s + 16-s + 2·17-s − 4·18-s − 20-s + 25-s − 4·26-s + 10·29-s + 32-s + 2·34-s − 4·36-s − 2·37-s − 40-s − 20·41-s + 4·45-s + 2·49-s + 50-s − 4·52-s − 4·53-s + 10·58-s − 3·61-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.353·8-s − 4/3·9-s − 0.316·10-s − 1.10·13-s + 1/4·16-s + 0.485·17-s − 0.942·18-s − 0.223·20-s + 1/5·25-s − 0.784·26-s + 1.85·29-s + 0.176·32-s + 0.342·34-s − 2/3·36-s − 0.328·37-s − 0.158·40-s − 3.12·41-s + 0.596·45-s + 2/7·49-s + 0.141·50-s − 0.554·52-s − 0.549·53-s + 1.31·58-s − 0.384·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 244000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.527565529095868816048342706857, −8.187229329596449208044209671130, −7.950787979002723920598482480648, −7.10325659015740832284385881109, −6.81857814444748456016128917287, −6.36497780905053588819064830733, −5.64574001916204253028043540297, −5.20759512886621870684999313441, −4.88622676193268438673788388900, −4.21376004236382692181015334550, −3.51050579405019984920683309967, −2.91943247778741616189395744665, −2.59479684280361760187893557549, −1.49959183140170230867147282267, 0,
1.49959183140170230867147282267, 2.59479684280361760187893557549, 2.91943247778741616189395744665, 3.51050579405019984920683309967, 4.21376004236382692181015334550, 4.88622676193268438673788388900, 5.20759512886621870684999313441, 5.64574001916204253028043540297, 6.36497780905053588819064830733, 6.81857814444748456016128917287, 7.10325659015740832284385881109, 7.950787979002723920598482480648, 8.187229329596449208044209671130, 8.527565529095868816048342706857