Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 53 x^{2} )( 1 + 10 x + 53 x^{2} )$ |
$1 + 4 x + 46 x^{2} + 212 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.364801829573$, $\pm0.740986412023$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $336$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3072$ | $8110080$ | $22186257408$ | $62309420236800$ | $174862649644649472$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $58$ | $2886$ | $149026$ | $7896782$ | $418136138$ | $22164063894$ | $1174713307826$ | $62259690299038$ | $3299763722269018$ | $174887470224134886$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 336 curves (of which all are hyperelliptic):
- $y^2=31 x^6+52 x^5+26 x^4+29 x^3+16 x^2+18 x+16$
- $y^2=39 x^6+33 x^5+45 x^4+15 x^3+24 x^2+25 x+20$
- $y^2=23 x^6+42 x^5+46 x^4+49 x^3+35 x^2+5 x+15$
- $y^2=50 x^6+51 x^5+36 x^4+37 x^3+36 x^2+51 x+50$
- $y^2=29 x^6+32 x^5+14 x^4+16 x^3+49 x^2+29 x+32$
- $y^2=6 x^6+39 x^5+37 x^4+47 x^3+9 x^2+51 x+4$
- $y^2=27 x^6+30 x^5+16 x^4+37 x^3+x^2+24 x+17$
- $y^2=6 x^6+26 x^5+49 x^4+52 x^3+49 x^2+26 x+6$
- $y^2=23 x^6+36 x^5+47 x^4+31 x^3+20 x^2+47$
- $y^2=43 x^6+46 x^5+2 x^4+8 x^3+4 x^2+39 x+31$
- $y^2=50 x^6+44 x^5+29 x^4+35 x^3+29 x^2+44 x+50$
- $y^2=16 x^6+49 x^5+15 x^4+5 x^3+31 x^2+30 x$
- $y^2=29 x^6+41 x^5+45 x^4+5 x^3+26 x^2+31 x+16$
- $y^2=20 x^6+20 x^5+46 x^4+2 x^3+5 x^2+10 x+6$
- $y^2=15 x^6+36 x^5+7 x^4+35 x^3+9 x^2+7 x+47$
- $y^2=41 x^6+24 x^5+50 x^4+14 x^3+9 x^2+40 x+18$
- $y^2=38 x^6+5 x^5+51 x^4+42 x^3+42 x^2+46 x+11$
- $y^2=50 x^6+29 x^5+50 x^4+21 x^3+47 x^2+37 x+24$
- $y^2=28 x^6+4 x^5+10 x^4+2 x^3+39 x^2+13$
- $y^2=50 x^6+48 x^5+8 x^4+50 x^3+10 x^2+11 x+47$
- and 316 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.ag $\times$ 1.53.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.aq_gk | $2$ | (not in LMFDB) |
2.53.ae_bu | $2$ | (not in LMFDB) |
2.53.q_gk | $2$ | (not in LMFDB) |