Properties

Label 2.53.e_bu
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $( 1 - 6 x + 53 x^{2} )( 1 + 10 x + 53 x^{2} )$
  $1 + 4 x + 46 x^{2} + 212 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.364801829573$, $\pm0.740986412023$
Angle rank:  $2$ (numerical)
Jacobians:  $336$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3072$ $8110080$ $22186257408$ $62309420236800$ $174862649644649472$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $58$ $2886$ $149026$ $7896782$ $418136138$ $22164063894$ $1174713307826$ $62259690299038$ $3299763722269018$ $174887470224134886$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 336 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The isogeny class factors as 1.53.ag $\times$ 1.53.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.aq_gk$2$(not in LMFDB)
2.53.ae_bu$2$(not in LMFDB)
2.53.q_gk$2$(not in LMFDB)