L(s) = 1 | + 2·5-s + 7-s + 3·11-s + 2·13-s − 3·17-s − 5·19-s + 9·23-s + 3·25-s − 9·29-s + 16·31-s + 2·35-s + 7·37-s + 3·41-s + 43-s + 7·49-s − 12·53-s + 6·55-s + 9·59-s + 61-s + 4·65-s − 5·67-s + 9·71-s + 4·73-s + 3·77-s + 16·79-s − 6·85-s + 3·89-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 0.377·7-s + 0.904·11-s + 0.554·13-s − 0.727·17-s − 1.14·19-s + 1.87·23-s + 3/5·25-s − 1.67·29-s + 2.87·31-s + 0.338·35-s + 1.15·37-s + 0.468·41-s + 0.152·43-s + 49-s − 1.64·53-s + 0.809·55-s + 1.17·59-s + 0.128·61-s + 0.496·65-s − 0.610·67-s + 1.06·71-s + 0.468·73-s + 0.341·77-s + 1.80·79-s − 0.650·85-s + 0.317·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5475600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5475600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.149507714\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.149507714\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.211966508324690687834619285038, −8.815663704734760938512032144373, −8.553429383932978960344497285537, −8.031054992288858227986354698404, −7.77099735324449532980487119907, −7.13477955576465337576446470334, −6.66370491211076931508791306262, −6.57257019774244667581609677797, −6.04086070554811934187130170812, −5.86751479854887688953622662848, −5.09571113841103880455206903261, −4.90342054065998181266788109978, −4.21352412332947996950622474244, −4.21061932549473637190861834557, −3.35175041987842435503183080552, −2.96847211873991689843911186418, −2.15655547608844431942471640989, −2.13129367445823359700598163322, −1.15075681083104921035062135474, −0.811446194337417660079124394338,
0.811446194337417660079124394338, 1.15075681083104921035062135474, 2.13129367445823359700598163322, 2.15655547608844431942471640989, 2.96847211873991689843911186418, 3.35175041987842435503183080552, 4.21061932549473637190861834557, 4.21352412332947996950622474244, 4.90342054065998181266788109978, 5.09571113841103880455206903261, 5.86751479854887688953622662848, 6.04086070554811934187130170812, 6.57257019774244667581609677797, 6.66370491211076931508791306262, 7.13477955576465337576446470334, 7.77099735324449532980487119907, 8.031054992288858227986354698404, 8.553429383932978960344497285537, 8.815663704734760938512032144373, 9.211966508324690687834619285038