L(s) = 1 | + 2·2-s + 4·3-s + 2·4-s + 8·6-s + 6·7-s + 6·9-s − 2·11-s + 8·12-s + 12·14-s − 4·16-s − 2·17-s + 12·18-s − 6·19-s + 24·21-s − 4·22-s + 2·23-s − 4·27-s + 12·28-s − 14·29-s − 8·32-s − 8·33-s − 4·34-s + 12·36-s − 12·38-s + 48·42-s − 4·44-s + 4·46-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 2.30·3-s + 4-s + 3.26·6-s + 2.26·7-s + 2·9-s − 0.603·11-s + 2.30·12-s + 3.20·14-s − 16-s − 0.485·17-s + 2.82·18-s − 1.37·19-s + 5.23·21-s − 0.852·22-s + 0.417·23-s − 0.769·27-s + 2.26·28-s − 2.59·29-s − 1.41·32-s − 1.39·33-s − 0.685·34-s + 2·36-s − 1.94·38-s + 7.40·42-s − 0.603·44-s + 0.589·46-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(7.782084086\) |
\(L(\frac12)\) |
\(\approx\) |
\(7.782084086\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35455486396953437560263081247, −11.34271634361405545287847666739, −10.73379146969660522359578918770, −10.27849030039582616896656543486, −9.295031495544919730835383000604, −9.080446070871572926049573007329, −8.539389580796878065360657991126, −8.500356497166096828363217037631, −7.70025707207685836442379056303, −7.56388854713531113647021984607, −7.03828459964845757621321930462, −6.02602324364513592661050955030, −5.50673183009769169056697951338, −5.12888088373373741374021003178, −4.37675151236705471912632784709, −3.98369903853993104647122963835, −3.57945930056259653910673692393, −2.66300934111373105017416825501, −2.15551292005125734328346292541, −1.97465207062418331185844996016,
1.97465207062418331185844996016, 2.15551292005125734328346292541, 2.66300934111373105017416825501, 3.57945930056259653910673692393, 3.98369903853993104647122963835, 4.37675151236705471912632784709, 5.12888088373373741374021003178, 5.50673183009769169056697951338, 6.02602324364513592661050955030, 7.03828459964845757621321930462, 7.56388854713531113647021984607, 7.70025707207685836442379056303, 8.500356497166096828363217037631, 8.539389580796878065360657991126, 9.080446070871572926049573007329, 9.295031495544919730835383000604, 10.27849030039582616896656543486, 10.73379146969660522359578918770, 11.34271634361405545287847666739, 11.35455486396953437560263081247