L(s) = 1 | − 2-s + 4-s + 2·7-s − 8-s − 2·9-s + 6·11-s − 2·14-s + 16-s + 2·18-s − 6·22-s − 8·23-s − 6·25-s + 2·28-s − 2·29-s − 32-s − 2·36-s + 18·37-s + 6·44-s + 8·46-s − 3·49-s + 6·50-s − 16·53-s − 2·56-s + 2·58-s − 4·63-s + 64-s + 12·67-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.755·7-s − 0.353·8-s − 2/3·9-s + 1.80·11-s − 0.534·14-s + 1/4·16-s + 0.471·18-s − 1.27·22-s − 1.66·23-s − 6/5·25-s + 0.377·28-s − 0.371·29-s − 0.176·32-s − 1/3·36-s + 2.95·37-s + 0.904·44-s + 1.17·46-s − 3/7·49-s + 0.848·50-s − 2.19·53-s − 0.267·56-s + 0.262·58-s − 0.503·63-s + 1/8·64-s + 1.46·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1812608 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1812608 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.88392067883317873323732278829, −7.34193543734856141985766466012, −6.58921977174404859524933413249, −6.38156492095862524079412821342, −5.99634891770781982895329828519, −5.65283030338896677625816003056, −4.96614585117299175749938468359, −4.33704213063608854893331021225, −4.04456379579310693215902405013, −3.58134509166004526973746885075, −2.82970725166072879260547279980, −2.23795200362104456983294853979, −1.65256707523874384271938426178, −1.13607983509649299751343440314, 0,
1.13607983509649299751343440314, 1.65256707523874384271938426178, 2.23795200362104456983294853979, 2.82970725166072879260547279980, 3.58134509166004526973746885075, 4.04456379579310693215902405013, 4.33704213063608854893331021225, 4.96614585117299175749938468359, 5.65283030338896677625816003056, 5.99634891770781982895329828519, 6.38156492095862524079412821342, 6.58921977174404859524933413249, 7.34193543734856141985766466012, 7.88392067883317873323732278829