L(s) = 1 | + 3·3-s + 6·9-s − 3·11-s − 9·17-s − 12·19-s + 3·25-s + 9·27-s − 9·33-s + 9·41-s + 6·43-s − 4·49-s − 27·51-s − 36·57-s + 9·59-s + 12·67-s + 12·73-s + 9·75-s + 9·81-s + 18·83-s + 9·89-s + 18·97-s − 18·99-s − 9·113-s − 13·121-s + 27·123-s + 127-s + 18·129-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 2·9-s − 0.904·11-s − 2.18·17-s − 2.75·19-s + 3/5·25-s + 1.73·27-s − 1.56·33-s + 1.40·41-s + 0.914·43-s − 4/7·49-s − 3.78·51-s − 4.76·57-s + 1.17·59-s + 1.46·67-s + 1.40·73-s + 1.03·75-s + 81-s + 1.97·83-s + 0.953·89-s + 1.82·97-s − 1.80·99-s − 0.846·113-s − 1.18·121-s + 2.43·123-s + 0.0887·127-s + 1.58·129-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.033901687\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.033901687\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.890327764932980221856451659376, −7.65320354704771349155237539162, −6.83616114754457655253758739944, −6.73232626850287649483336194106, −6.34557128417490157174379700969, −5.71900219272245459035251262557, −4.91646408905165589452205009498, −4.64363732314390714339298961135, −4.07483014874599579002453126283, −3.90948811160586190962324856848, −3.14116733981956081233584954458, −2.44975145693351339309631160997, −2.23873540662771517942220044410, −1.97667173550287969679366501134, −0.60671002202829121535011501691,
0.60671002202829121535011501691, 1.97667173550287969679366501134, 2.23873540662771517942220044410, 2.44975145693351339309631160997, 3.14116733981956081233584954458, 3.90948811160586190962324856848, 4.07483014874599579002453126283, 4.64363732314390714339298961135, 4.91646408905165589452205009498, 5.71900219272245459035251262557, 6.34557128417490157174379700969, 6.73232626850287649483336194106, 6.83616114754457655253758739944, 7.65320354704771349155237539162, 7.890327764932980221856451659376