Properties

Label 2.43.ag_di
Base field $\F_{43}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $( 1 - 6 x + 43 x^{2} )( 1 + 43 x^{2} )$
  $1 - 6 x + 86 x^{2} - 258 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.348746511119$, $\pm0.5$
Angle rank:  $1$ (numerical)
Jacobians:  $104$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1672$ $3678400$ $6365887528$ $11679655680000$ $21609011983391272$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $38$ $1986$ $80066$ $3416302$ $146991638$ $6321369714$ $271818419666$ $11688198842398$ $502592652583238$ $21611482618876386$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 104 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43^{2}}$.

Endomorphism algebra over $\F_{43}$
The isogeny class factors as 1.43.ag $\times$ 1.43.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{43}$
The base change of $A$ to $\F_{43^{2}}$ is 1.1849.by $\times$ 1.1849.di. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.g_di$2$(not in LMFDB)