Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 33 x^{2} + 841 x^{4}$ |
Frobenius angles: | $\pm0.153671890037$, $\pm0.846328109963$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{91})\) |
Galois group: | $C_2^2$ |
Jacobians: | $20$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $809$ | $654481$ | $594870644$ | $501087015625$ | $420707228578529$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $776$ | $24390$ | $708468$ | $20511150$ | $594917966$ | $17249876310$ | $500248538788$ | $14507145975870$ | $420707223856856$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=28 x^6+8 x^5+6 x^4+28 x^3+21 x^2+4 x+26$
- $y^2=27 x^6+16 x^5+12 x^4+27 x^3+13 x^2+8 x+23$
- $y^2=15 x^6+14 x^5+24 x^4+15 x^3+27 x^2+15 x+23$
- $y^2=7 x^6+3 x^5+14 x^4+8 x^3+11 x^2+22 x+2$
- $y^2=14 x^6+6 x^5+28 x^4+16 x^3+22 x^2+15 x+4$
- $y^2=5 x^6+7 x^5+x^4+22 x^3+11 x^2+6 x+14$
- $y^2=15 x^6+25 x^5+3 x^4+14 x^3+9 x^2+15 x+9$
- $y^2=x^6+21 x^5+6 x^4+28 x^3+18 x^2+x+18$
- $y^2=23 x^6+25 x^5+7 x^4+20 x^3+3 x^2+4 x+15$
- $y^2=17 x^6+6 x^5+24 x^4+3 x^3+19 x^2+7 x+24$
- $y^2=5 x^6+12 x^5+19 x^4+6 x^3+9 x^2+14 x+19$
- $y^2=27 x^6+23 x^5+2 x^4+20 x^3+18 x^2+12 x+22$
- $y^2=25 x^6+17 x^5+4 x^4+11 x^3+7 x^2+24 x+15$
- $y^2=8 x^6+23 x^5+16 x^3+9 x+25$
- $y^2=2 x^6+26 x^5+24 x^4+22 x^3+20 x^2+6 x+7$
- $y^2=4 x^6+23 x^5+19 x^4+15 x^3+11 x^2+12 x+14$
- $y^2=4 x^6+17 x^4+8 x^3+18 x^2+12 x+9$
- $y^2=8 x^6+5 x^4+16 x^3+7 x^2+24 x+18$
- $y^2=20 x^6+12 x^5+14 x^4+11 x^3+12 x^2+23 x+6$
- $y^2=11 x^6+24 x^5+28 x^4+22 x^3+24 x^2+17 x+12$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{2}}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{91})\). |
The base change of $A$ to $\F_{29^{2}}$ is 1.841.abh 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-91}) \)$)$ |
Base change
This is a primitive isogeny class.