Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 18 x + 97 x^{2} )( 1 + 97 x^{2} )$ |
$1 - 18 x + 194 x^{2} - 1746 x^{3} + 9409 x^{4}$ | |
Frobenius angles: | $\pm0.133124938748$, $\pm0.5$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $256$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7840$ | $89125120$ | $832431701920$ | $7835937590476800$ | $73743203961373559200$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $9474$ | $912080$ | $88512382$ | $8587432400$ | $832975302786$ | $80798302045520$ | $7837433590698238$ | $760231060071363920$ | $73742412715352038914$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 256 curves (of which all are hyperelliptic):
- $y^2=31 x^6+67 x^5+26 x^4+65 x^3+16 x^2+90 x+19$
- $y^2=80 x^6+15 x^5+80 x^4+9 x^3+79 x^2+23 x+10$
- $y^2=64 x^6+46 x^5+60 x^4+19 x^3+15 x^2+19 x+5$
- $y^2=76 x^6+33 x^5+46 x^4+86 x^3+22 x^2+6 x+46$
- $y^2=29 x^6+3 x^5+40 x^4+77 x^3+39 x^2+16 x+73$
- $y^2=77 x^6+16 x^5+41 x^4+96 x^3+62 x^2+34 x+59$
- $y^2=29 x^6+19 x^5+75 x^4+75 x^3+73 x^2+50 x+25$
- $y^2=4 x^6+4 x^5+24 x^4+47 x^3+37 x^2+57 x+17$
- $y^2=46 x^6+94 x^5+77 x^4+4 x^3+27 x^2+51 x+13$
- $y^2=35 x^6+18 x^5+75 x^4+10 x^3+13 x^2+94 x+20$
- $y^2=6 x^6+14 x^5+48 x^4+70 x^3+43 x^2+94 x+86$
- $y^2=16 x^6+59 x^5+8 x^4+73 x^3+34 x^2+32 x+50$
- $y^2=92 x^6+24 x^5+24 x^4+28 x^3+45 x^2+96 x+87$
- $y^2=71 x^6+6 x^5+45 x^4+53 x^3+94 x^2+44 x+38$
- $y^2=44 x^5+5 x^4+34 x^3+71 x^2+63 x+34$
- $y^2=37 x^6+81 x^5+56 x^4+74 x^3+68 x^2+44 x+14$
- $y^2=19 x^6+45 x^5+56 x^4+62 x^3+87 x^2+62 x+70$
- $y^2=60 x^6+41 x^5+94 x^4+22 x^3+75 x^2+61 x+38$
- $y^2=70 x^6+92 x^5+56 x^4+90 x^3+40 x^2+x+46$
- $y^2=46 x^6+15 x^5+85 x^4+45 x^3+61 x^2+8 x+15$
- and 236 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{2}}$.
Endomorphism algebra over $\F_{97}$The isogeny class factors as 1.97.as $\times$ 1.97.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{97^{2}}$ is 1.9409.afa $\times$ 1.9409.hm. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.97.s_hm | $2$ | (not in LMFDB) |
2.97.ai_hm | $4$ | (not in LMFDB) |
2.97.i_hm | $4$ | (not in LMFDB) |