L(s) = 1 | − 2·3-s + 3·9-s − 4·11-s − 8·13-s + 2·17-s − 6·19-s + 8·23-s + 5·25-s − 10·27-s + 4·29-s − 4·31-s + 8·33-s − 10·37-s + 16·39-s − 20·41-s − 8·43-s + 4·47-s − 4·51-s + 2·53-s + 12·57-s + 10·59-s + 8·61-s − 8·67-s − 16·69-s + 6·73-s − 10·75-s − 16·79-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 9-s − 1.20·11-s − 2.21·13-s + 0.485·17-s − 1.37·19-s + 1.66·23-s + 25-s − 1.92·27-s + 0.742·29-s − 0.718·31-s + 1.39·33-s − 1.64·37-s + 2.56·39-s − 3.12·41-s − 1.21·43-s + 0.583·47-s − 0.560·51-s + 0.274·53-s + 1.58·57-s + 1.30·59-s + 1.02·61-s − 0.977·67-s − 1.92·69-s + 0.702·73-s − 1.15·75-s − 1.80·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2458624 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2458624 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.418564132729568135703695940938, −8.563899505952502567050134363861, −8.562303252400132648517159579864, −8.138431466689679123969702062916, −7.29143281399030469363913597249, −7.08226402182520783851452356127, −7.00764085731017573488002496055, −6.57774818461754523116741836472, −5.67261209230861090809381373962, −5.53398717231615884105226253317, −4.96609649475725695311260229075, −4.94457999851247848760270108663, −4.45274012504506437945278018808, −3.63832345110949639900419483165, −3.16724902907722981967658499841, −2.52925504706822582949965041094, −2.05135784993971276255827462844, −1.31463107457763231150686650869, 0, 0,
1.31463107457763231150686650869, 2.05135784993971276255827462844, 2.52925504706822582949965041094, 3.16724902907722981967658499841, 3.63832345110949639900419483165, 4.45274012504506437945278018808, 4.94457999851247848760270108663, 4.96609649475725695311260229075, 5.53398717231615884105226253317, 5.67261209230861090809381373962, 6.57774818461754523116741836472, 7.00764085731017573488002496055, 7.08226402182520783851452356127, 7.29143281399030469363913597249, 8.138431466689679123969702062916, 8.562303252400132648517159579864, 8.563899505952502567050134363861, 9.418564132729568135703695940938