Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 18 x + 235 x^{2} + 1602 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.569742487015$, $\pm0.763590846318$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
Galois group: | $C_2^2$ |
Jacobians: | $291$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9777$ | $63912249$ | $495537155136$ | $3936932223957225$ | $31181760230175333777$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $108$ | $8068$ | $702918$ | $62747716$ | $5584066668$ | $496982005486$ | $44231327822412$ | $3936588710182276$ | $350356405887183222$ | $31181719918850164228$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 291 curves (of which all are hyperelliptic):
- $y^2=78 x^6+2 x^5+36 x^4+63 x^3+11 x^2+80 x+78$
- $y^2=33 x^6+18 x^5+5 x^4+69 x^3+65 x^2+63 x+71$
- $y^2=15 x^6+48 x^5+32 x^4+36 x^3+61 x^2+23 x+37$
- $y^2=79 x^6+17 x^5+22 x^4+75 x^3+66 x^2+36 x+67$
- $y^2=32 x^6+20 x^5+71 x^4+29 x^3+38 x^2+31 x+10$
- $y^2=83 x^6+5 x^5+6 x^4+80 x^3+30 x^2+56 x+73$
- $y^2=57 x^6+x^5+6 x^4+67 x^3+43 x^2+41 x+41$
- $y^2=31 x^6+45 x^5+65 x^4+61 x^3+74 x^2+28 x+2$
- $y^2=63 x^6+86 x^5+49 x^4+21 x^3+13 x^2+85 x+38$
- $y^2=2 x^6+41 x^5+44 x^4+4 x^3+59 x^2+48 x+81$
- $y^2=73 x^6+63 x^5+10 x^4+54 x^3+7 x^2+55 x+80$
- $y^2=51 x^6+5 x^5+6 x^4+50 x^3+6 x^2+32$
- $y^2=8 x^6+67 x^5+37 x^4+4 x^3+72 x^2+20 x+84$
- $y^2=52 x^6+22 x^5+82 x^4+54 x^3+28 x^2+15 x+61$
- $y^2=17 x^6+44 x^5+66 x^4+51 x^3+27 x^2+x+42$
- $y^2=17 x^6+25 x^5+30 x^4+6 x^3+15 x^2+13 x+36$
- $y^2=39 x^6+69 x^5+88 x^4+79 x^2+7 x+72$
- $y^2=41 x^6+61 x^5+8 x^4+8 x^2+86 x+29$
- $y^2=65 x^6+54 x^4+81 x^3+36 x^2+61 x+20$
- $y^2=87 x^6+65 x^5+40 x^4+87 x^3+2 x^2+77 x+32$
- and 271 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{3}}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{-3})\). |
The base change of $A$ to $\F_{89^{3}}$ is 1.704969.abnm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
Base change
This is a primitive isogeny class.