L(s) = 1 | − 2·2-s − 2·3-s + 2·4-s − 4·5-s + 4·6-s − 2·7-s + 9-s + 8·10-s − 6·11-s − 4·12-s − 8·13-s + 4·14-s + 8·15-s − 4·16-s − 4·17-s − 2·18-s + 8·19-s − 8·20-s + 4·21-s + 12·22-s − 4·23-s + 2·25-s + 16·26-s − 2·27-s − 4·28-s + 8·29-s − 16·30-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.15·3-s + 4-s − 1.78·5-s + 1.63·6-s − 0.755·7-s + 1/3·9-s + 2.52·10-s − 1.80·11-s − 1.15·12-s − 2.21·13-s + 1.06·14-s + 2.06·15-s − 16-s − 0.970·17-s − 0.471·18-s + 1.83·19-s − 1.78·20-s + 0.872·21-s + 2.55·22-s − 0.834·23-s + 2/5·25-s + 3.13·26-s − 0.384·27-s − 0.755·28-s + 1.48·29-s − 2.92·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.1920174169, −15.8576685927, −15.6038578732, −15.1016494290, −14.3087253085, −13.7052370125, −12.9583864139, −12.6720749304, −11.8110660637, −11.7573247228, −11.3825198161, −10.7751381625, −9.96956258205, −9.93309835361, −9.49466349058, −8.28916011697, −8.01433080787, −7.75456110221, −6.87039121695, −6.86682095955, −5.55163436816, −5.00317001401, −4.49161097993, −3.32391285922, −2.42130817561, 0, 0,
2.42130817561, 3.32391285922, 4.49161097993, 5.00317001401, 5.55163436816, 6.86682095955, 6.87039121695, 7.75456110221, 8.01433080787, 8.28916011697, 9.49466349058, 9.93309835361, 9.96956258205, 10.7751381625, 11.3825198161, 11.7573247228, 11.8110660637, 12.6720749304, 12.9583864139, 13.7052370125, 14.3087253085, 15.1016494290, 15.6038578732, 15.8576685927, 16.1920174169