Properties

Label 4-148e2-1.1-c1e2-0-11
Degree $4$
Conductor $21904$
Sign $1$
Analytic cond. $1.39661$
Root an. cond. $1.08709$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2·3-s + 2·4-s − 4·5-s + 4·6-s − 2·7-s + 9-s + 8·10-s − 6·11-s − 4·12-s − 8·13-s + 4·14-s + 8·15-s − 4·16-s − 4·17-s − 2·18-s + 8·19-s − 8·20-s + 4·21-s + 12·22-s − 4·23-s + 2·25-s + 16·26-s − 2·27-s − 4·28-s + 8·29-s − 16·30-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.15·3-s + 4-s − 1.78·5-s + 1.63·6-s − 0.755·7-s + 1/3·9-s + 2.52·10-s − 1.80·11-s − 1.15·12-s − 2.21·13-s + 1.06·14-s + 2.06·15-s − 16-s − 0.970·17-s − 0.471·18-s + 1.83·19-s − 1.78·20-s + 0.872·21-s + 2.55·22-s − 0.834·23-s + 2/5·25-s + 3.13·26-s − 0.384·27-s − 0.755·28-s + 1.48·29-s − 2.92·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(21904\)    =    \(2^{4} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(1.39661\)
Root analytic conductor: \(1.08709\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 21904,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2$ \( 1 + p T + p T^{2} \)
37$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + p T + p T^{2} ) \) 2.3.c_d
5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.5.e_o
7$C_2$ \( ( 1 + T + p T^{2} )^{2} \) 2.7.c_p
11$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.11.g_bb
13$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.13.i_bm
17$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.17.e_bi
19$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.19.ai_bm
23$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.23.e_bi
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.29.ai_cs
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.31.a_bu
41$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.41.c_t
43$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.43.a_de
47$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \) 2.47.s_gt
53$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.53.c_dz
59$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 8 T + p T^{2} ) \) 2.59.au_ig
61$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.61.e_dm
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.67.ai_fe
71$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) 2.71.ac_db
73$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + T + p T^{2} ) \) 2.73.ag_fj
79$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) 2.79.ae_gc
83$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 15 T + p T^{2} ) \) 2.83.s_id
89$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.89.i_fa
97$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.97.e_gg
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.1920174169, −15.8576685927, −15.6038578732, −15.1016494290, −14.3087253085, −13.7052370125, −12.9583864139, −12.6720749304, −11.8110660637, −11.7573247228, −11.3825198161, −10.7751381625, −9.96956258205, −9.93309835361, −9.49466349058, −8.28916011697, −8.01433080787, −7.75456110221, −6.87039121695, −6.86682095955, −5.55163436816, −5.00317001401, −4.49161097993, −3.32391285922, −2.42130817561, 0, 0, 2.42130817561, 3.32391285922, 4.49161097993, 5.00317001401, 5.55163436816, 6.86682095955, 6.87039121695, 7.75456110221, 8.01433080787, 8.28916011697, 9.49466349058, 9.93309835361, 9.96956258205, 10.7751381625, 11.3825198161, 11.7573247228, 11.8110660637, 12.6720749304, 12.9583864139, 13.7052370125, 14.3087253085, 15.1016494290, 15.6038578732, 15.8576685927, 16.1920174169

Graph of the $Z$-function along the critical line