L(s) = 1 | − 6·3-s − 6·7-s + 21·9-s + 6·11-s + 36·21-s + 10·25-s − 54·27-s − 36·33-s − 2·37-s − 14·41-s − 6·47-s + 13·49-s − 22·53-s − 126·63-s − 24·67-s + 6·71-s − 14·73-s − 60·75-s − 36·77-s + 108·81-s − 18·83-s + 126·99-s − 22·101-s + 24·107-s + 12·111-s + 5·121-s + 84·123-s + ⋯ |
L(s) = 1 | − 3.46·3-s − 2.26·7-s + 7·9-s + 1.80·11-s + 7.85·21-s + 2·25-s − 10.3·27-s − 6.26·33-s − 0.328·37-s − 2.18·41-s − 0.875·47-s + 13/7·49-s − 3.02·53-s − 15.8·63-s − 2.93·67-s + 0.712·71-s − 1.63·73-s − 6.92·75-s − 4.10·77-s + 12·81-s − 1.97·83-s + 12.6·99-s − 2.18·101-s + 2.32·107-s + 1.13·111-s + 5/11·121-s + 7.57·123-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.717098620071289271482367988573, −9.476453010398267225649005615815, −8.911765216794801910154404843509, −8.526835917607936880576998432277, −7.42495547877824549447774877256, −7.15790908594484786264171609282, −6.65295818064336061451589585980, −6.48215044793463326219237435036, −6.30325402447759243699073845885, −6.03951397522205891602003801067, −5.33234874297983353803064831620, −5.03230299323480301255415095935, −4.47812985944761101242708587188, −4.18178916827378162770762962432, −3.22287706565999957455946503338, −3.20865092820049952162660663364, −1.43118531660884195734322183492, −1.28642240988567014858029642864, 0, 0,
1.28642240988567014858029642864, 1.43118531660884195734322183492, 3.20865092820049952162660663364, 3.22287706565999957455946503338, 4.18178916827378162770762962432, 4.47812985944761101242708587188, 5.03230299323480301255415095935, 5.33234874297983353803064831620, 6.03951397522205891602003801067, 6.30325402447759243699073845885, 6.48215044793463326219237435036, 6.65295818064336061451589585980, 7.15790908594484786264171609282, 7.42495547877824549447774877256, 8.526835917607936880576998432277, 8.911765216794801910154404843509, 9.476453010398267225649005615815, 9.717098620071289271482367988573