Properties

Label 1184.2.g.a.961.1
Level $1184$
Weight $2$
Character 1184.961
Analytic conductor $9.454$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1184,2,Mod(961,1184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1184, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1184.961"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1184 = 2^{5} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1184.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.45428759932\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 961.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1184.961
Dual form 1184.2.g.a.961.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -3.00000 q^{7} +6.00000 q^{9} +3.00000 q^{11} -6.00000i q^{13} +6.00000i q^{17} +9.00000 q^{21} +4.00000i q^{23} +5.00000 q^{25} -9.00000 q^{27} -6.00000i q^{29} -4.00000i q^{31} -9.00000 q^{33} +(-1.00000 + 6.00000i) q^{37} +18.0000i q^{39} -7.00000 q^{41} -10.0000i q^{43} -3.00000 q^{47} +2.00000 q^{49} -18.0000i q^{51} -11.0000 q^{53} +10.0000i q^{59} +6.00000i q^{61} -18.0000 q^{63} -12.0000 q^{67} -12.0000i q^{69} +3.00000 q^{71} -7.00000 q^{73} -15.0000 q^{75} -9.00000 q^{77} -6.00000i q^{79} +9.00000 q^{81} -9.00000 q^{83} +18.0000i q^{87} +12.0000i q^{89} +18.0000i q^{91} +12.0000i q^{93} +6.00000i q^{97} +18.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 6 q^{7} + 12 q^{9} + 6 q^{11} + 18 q^{21} + 10 q^{25} - 18 q^{27} - 18 q^{33} - 2 q^{37} - 14 q^{41} - 6 q^{47} + 4 q^{49} - 22 q^{53} - 36 q^{63} - 24 q^{67} + 6 q^{71} - 14 q^{73} - 30 q^{75}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1184\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(705\) \(741\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 0 0
\(9\) 6.00000 2.00000
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 6.00000i 1.66410i −0.554700 0.832050i \(-0.687167\pi\)
0.554700 0.832050i \(-0.312833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000i 1.45521i 0.685994 + 0.727607i \(0.259367\pi\)
−0.685994 + 0.727607i \(0.740633\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 9.00000 1.96396
\(22\) 0 0
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) −9.00000 −1.73205
\(28\) 0 0
\(29\) 6.00000i 1.11417i −0.830455 0.557086i \(-0.811919\pi\)
0.830455 0.557086i \(-0.188081\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i −0.933257 0.359211i \(-0.883046\pi\)
0.933257 0.359211i \(-0.116954\pi\)
\(32\) 0 0
\(33\) −9.00000 −1.56670
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 + 6.00000i −0.164399 + 0.986394i
\(38\) 0 0
\(39\) 18.0000i 2.88231i
\(40\) 0 0
\(41\) −7.00000 −1.09322 −0.546608 0.837389i \(-0.684081\pi\)
−0.546608 + 0.837389i \(0.684081\pi\)
\(42\) 0 0
\(43\) 10.0000i 1.52499i −0.646997 0.762493i \(-0.723975\pi\)
0.646997 0.762493i \(-0.276025\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 18.0000i 2.52050i
\(52\) 0 0
\(53\) −11.0000 −1.51097 −0.755483 0.655168i \(-0.772598\pi\)
−0.755483 + 0.655168i \(0.772598\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.0000i 1.30189i 0.759125 + 0.650945i \(0.225627\pi\)
−0.759125 + 0.650945i \(0.774373\pi\)
\(60\) 0 0
\(61\) 6.00000i 0.768221i 0.923287 + 0.384111i \(0.125492\pi\)
−0.923287 + 0.384111i \(0.874508\pi\)
\(62\) 0 0
\(63\) −18.0000 −2.26779
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) 12.0000i 1.44463i
\(70\) 0 0
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 0 0
\(75\) −15.0000 −1.73205
\(76\) 0 0
\(77\) −9.00000 −1.02565
\(78\) 0 0
\(79\) 6.00000i 0.675053i −0.941316 0.337526i \(-0.890410\pi\)
0.941316 0.337526i \(-0.109590\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) −9.00000 −0.987878 −0.493939 0.869496i \(-0.664443\pi\)
−0.493939 + 0.869496i \(0.664443\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 18.0000i 1.92980i
\(88\) 0 0
\(89\) 12.0000i 1.27200i 0.771690 + 0.635999i \(0.219412\pi\)
−0.771690 + 0.635999i \(0.780588\pi\)
\(90\) 0 0
\(91\) 18.0000i 1.88691i
\(92\) 0 0
\(93\) 12.0000i 1.24434i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 6.00000i 0.609208i 0.952479 + 0.304604i \(0.0985241\pi\)
−0.952479 + 0.304604i \(0.901476\pi\)
\(98\) 0 0
\(99\) 18.0000 1.80907
\(100\) 0 0
\(101\) −11.0000 −1.09454 −0.547270 0.836956i \(-0.684333\pi\)
−0.547270 + 0.836956i \(0.684333\pi\)
\(102\) 0 0
\(103\) 6.00000i 0.591198i 0.955312 + 0.295599i \(0.0955191\pi\)
−0.955312 + 0.295599i \(0.904481\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) 12.0000i 1.14939i −0.818367 0.574696i \(-0.805120\pi\)
0.818367 0.574696i \(-0.194880\pi\)
\(110\) 0 0
\(111\) 3.00000 18.0000i 0.284747 1.70848i
\(112\) 0 0
\(113\) 6.00000i 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 36.0000i 3.32820i
\(118\) 0 0
\(119\) 18.0000i 1.65006i
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 21.0000 1.89351
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.00000 0.266207 0.133103 0.991102i \(-0.457506\pi\)
0.133103 + 0.991102i \(0.457506\pi\)
\(128\) 0 0
\(129\) 30.0000i 2.64135i
\(130\) 0 0
\(131\) 2.00000i 0.174741i −0.996176 0.0873704i \(-0.972154\pi\)
0.996176 0.0873704i \(-0.0278464\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 9.00000 0.757937
\(142\) 0 0
\(143\) 18.0000i 1.50524i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −6.00000 −0.494872
\(148\) 0 0
\(149\) 7.00000 0.573462 0.286731 0.958011i \(-0.407431\pi\)
0.286731 + 0.958011i \(0.407431\pi\)
\(150\) 0 0
\(151\) −12.0000 −0.976546 −0.488273 0.872691i \(-0.662373\pi\)
−0.488273 + 0.872691i \(0.662373\pi\)
\(152\) 0 0
\(153\) 36.0000i 2.91043i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −21.0000 −1.67598 −0.837991 0.545684i \(-0.816270\pi\)
−0.837991 + 0.545684i \(0.816270\pi\)
\(158\) 0 0
\(159\) 33.0000 2.61707
\(160\) 0 0
\(161\) 12.0000i 0.945732i
\(162\) 0 0
\(163\) 20.0000i 1.56652i 0.621694 + 0.783260i \(0.286445\pi\)
−0.621694 + 0.783260i \(0.713555\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.00000i 0.309529i −0.987951 0.154765i \(-0.950538\pi\)
0.987951 0.154765i \(-0.0494619\pi\)
\(168\) 0 0
\(169\) −23.0000 −1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.00000 −0.0760286 −0.0380143 0.999277i \(-0.512103\pi\)
−0.0380143 + 0.999277i \(0.512103\pi\)
\(174\) 0 0
\(175\) −15.0000 −1.13389
\(176\) 0 0
\(177\) 30.0000i 2.25494i
\(178\) 0 0
\(179\) 10.0000i 0.747435i 0.927543 + 0.373718i \(0.121917\pi\)
−0.927543 + 0.373718i \(0.878083\pi\)
\(180\) 0 0
\(181\) 25.0000 1.85824 0.929118 0.369784i \(-0.120568\pi\)
0.929118 + 0.369784i \(0.120568\pi\)
\(182\) 0 0
\(183\) 18.0000i 1.33060i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 18.0000i 1.31629i
\(188\) 0 0
\(189\) 27.0000 1.96396
\(190\) 0 0
\(191\) 14.0000i 1.01300i −0.862239 0.506502i \(-0.830938\pi\)
0.862239 0.506502i \(-0.169062\pi\)
\(192\) 0 0
\(193\) 12.0000i 0.863779i −0.901927 0.431889i \(-0.857847\pi\)
0.901927 0.431889i \(-0.142153\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −13.0000 −0.926212 −0.463106 0.886303i \(-0.653265\pi\)
−0.463106 + 0.886303i \(0.653265\pi\)
\(198\) 0 0
\(199\) 2.00000i 0.141776i 0.997484 + 0.0708881i \(0.0225833\pi\)
−0.997484 + 0.0708881i \(0.977417\pi\)
\(200\) 0 0
\(201\) 36.0000 2.53924
\(202\) 0 0
\(203\) 18.0000i 1.26335i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 24.0000i 1.66812i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 21.0000 1.44570 0.722850 0.691005i \(-0.242832\pi\)
0.722850 + 0.691005i \(0.242832\pi\)
\(212\) 0 0
\(213\) −9.00000 −0.616670
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 12.0000i 0.814613i
\(218\) 0 0
\(219\) 21.0000 1.41905
\(220\) 0 0
\(221\) 36.0000 2.42162
\(222\) 0 0
\(223\) −15.0000 −1.00447 −0.502237 0.864730i \(-0.667490\pi\)
−0.502237 + 0.864730i \(0.667490\pi\)
\(224\) 0 0
\(225\) 30.0000 2.00000
\(226\) 0 0
\(227\) 28.0000i 1.85843i −0.369546 0.929213i \(-0.620487\pi\)
0.369546 0.929213i \(-0.379513\pi\)
\(228\) 0 0
\(229\) −9.00000 −0.594737 −0.297368 0.954763i \(-0.596109\pi\)
−0.297368 + 0.954763i \(0.596109\pi\)
\(230\) 0 0
\(231\) 27.0000 1.77647
\(232\) 0 0
\(233\) 2.00000 0.131024 0.0655122 0.997852i \(-0.479132\pi\)
0.0655122 + 0.997852i \(0.479132\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 18.0000i 1.16923i
\(238\) 0 0
\(239\) 2.00000i 0.129369i −0.997906 0.0646846i \(-0.979396\pi\)
0.997906 0.0646846i \(-0.0206041\pi\)
\(240\) 0 0
\(241\) 18.0000i 1.15948i −0.814801 0.579741i \(-0.803154\pi\)
0.814801 0.579741i \(-0.196846\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 27.0000 1.71106
\(250\) 0 0
\(251\) 20.0000i 1.26239i 0.775625 + 0.631194i \(0.217435\pi\)
−0.775625 + 0.631194i \(0.782565\pi\)
\(252\) 0 0
\(253\) 12.0000i 0.754434i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0000i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) 0 0
\(259\) 3.00000 18.0000i 0.186411 1.11847i
\(260\) 0 0
\(261\) 36.0000i 2.22834i
\(262\) 0 0
\(263\) 27.0000 1.66489 0.832446 0.554107i \(-0.186940\pi\)
0.832446 + 0.554107i \(0.186940\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 36.0000i 2.20316i
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) −9.00000 −0.546711 −0.273356 0.961913i \(-0.588134\pi\)
−0.273356 + 0.961913i \(0.588134\pi\)
\(272\) 0 0
\(273\) 54.0000i 3.26823i
\(274\) 0 0
\(275\) 15.0000 0.904534
\(276\) 0 0
\(277\) 24.0000i 1.44202i 0.692925 + 0.721010i \(0.256322\pi\)
−0.692925 + 0.721010i \(0.743678\pi\)
\(278\) 0 0
\(279\) 24.0000i 1.43684i
\(280\) 0 0
\(281\) 24.0000i 1.43172i 0.698244 + 0.715860i \(0.253965\pi\)
−0.698244 + 0.715860i \(0.746035\pi\)
\(282\) 0 0
\(283\) 6.00000i 0.356663i 0.983970 + 0.178331i \(0.0570699\pi\)
−0.983970 + 0.178331i \(0.942930\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 21.0000 1.23959
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 18.0000i 1.05518i
\(292\) 0 0
\(293\) −2.00000 −0.116841 −0.0584206 0.998292i \(-0.518606\pi\)
−0.0584206 + 0.998292i \(0.518606\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −27.0000 −1.56670
\(298\) 0 0
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) 30.0000i 1.72917i
\(302\) 0 0
\(303\) 33.0000 1.89580
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −21.0000 −1.19853 −0.599267 0.800549i \(-0.704541\pi\)
−0.599267 + 0.800549i \(0.704541\pi\)
\(308\) 0 0
\(309\) 18.0000i 1.02398i
\(310\) 0 0
\(311\) 16.0000i 0.907277i 0.891186 + 0.453638i \(0.149874\pi\)
−0.891186 + 0.453638i \(0.850126\pi\)
\(312\) 0 0
\(313\) 6.00000i 0.339140i 0.985518 + 0.169570i \(0.0542379\pi\)
−0.985518 + 0.169570i \(0.945762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.0000 0.561656 0.280828 0.959758i \(-0.409391\pi\)
0.280828 + 0.959758i \(0.409391\pi\)
\(318\) 0 0
\(319\) 18.0000i 1.00781i
\(320\) 0 0
\(321\) −36.0000 −2.00932
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 30.0000i 1.66410i
\(326\) 0 0
\(327\) 36.0000i 1.99080i
\(328\) 0 0
\(329\) 9.00000 0.496186
\(330\) 0 0
\(331\) 24.0000i 1.31916i −0.751635 0.659580i \(-0.770734\pi\)
0.751635 0.659580i \(-0.229266\pi\)
\(332\) 0 0
\(333\) −6.00000 + 36.0000i −0.328798 + 1.97279i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −15.0000 −0.817102 −0.408551 0.912735i \(-0.633966\pi\)
−0.408551 + 0.912735i \(0.633966\pi\)
\(338\) 0 0
\(339\) 18.0000i 0.977626i
\(340\) 0 0
\(341\) 12.0000i 0.649836i
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 34.0000i 1.82522i 0.408836 + 0.912608i \(0.365935\pi\)
−0.408836 + 0.912608i \(0.634065\pi\)
\(348\) 0 0
\(349\) −30.0000 −1.60586 −0.802932 0.596071i \(-0.796728\pi\)
−0.802932 + 0.596071i \(0.796728\pi\)
\(350\) 0 0
\(351\) 54.0000i 2.88231i
\(352\) 0 0
\(353\) 18.0000i 0.958043i −0.877803 0.479022i \(-0.840992\pi\)
0.877803 0.479022i \(-0.159008\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 54.0000i 2.85798i
\(358\) 0 0
\(359\) −33.0000 −1.74167 −0.870837 0.491572i \(-0.836422\pi\)
−0.870837 + 0.491572i \(0.836422\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 6.00000 0.314918
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) −42.0000 −2.18643
\(370\) 0 0
\(371\) 33.0000 1.71327
\(372\) 0 0
\(373\) −33.0000 −1.70868 −0.854338 0.519718i \(-0.826037\pi\)
−0.854338 + 0.519718i \(0.826037\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −36.0000 −1.85409
\(378\) 0 0
\(379\) −27.0000 −1.38690 −0.693448 0.720506i \(-0.743909\pi\)
−0.693448 + 0.720506i \(0.743909\pi\)
\(380\) 0 0
\(381\) −9.00000 −0.461084
\(382\) 0 0
\(383\) 8.00000i 0.408781i −0.978889 0.204390i \(-0.934479\pi\)
0.978889 0.204390i \(-0.0655212\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 60.0000i 3.04997i
\(388\) 0 0
\(389\) 24.0000i 1.21685i −0.793612 0.608424i \(-0.791802\pi\)
0.793612 0.608424i \(-0.208198\pi\)
\(390\) 0 0
\(391\) −24.0000 −1.21373
\(392\) 0 0
\(393\) 6.00000i 0.302660i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −3.00000 −0.150566 −0.0752828 0.997162i \(-0.523986\pi\)
−0.0752828 + 0.997162i \(0.523986\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.00000i 0.299626i 0.988714 + 0.149813i \(0.0478671\pi\)
−0.988714 + 0.149813i \(0.952133\pi\)
\(402\) 0 0
\(403\) −24.0000 −1.19553
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.00000 + 18.0000i −0.148704 + 0.892227i
\(408\) 0 0
\(409\) 18.0000i 0.890043i −0.895520 0.445021i \(-0.853196\pi\)
0.895520 0.445021i \(-0.146804\pi\)
\(410\) 0 0
\(411\) −6.00000 −0.295958
\(412\) 0 0
\(413\) 30.0000i 1.47620i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 36.0000 1.76293
\(418\) 0 0
\(419\) −3.00000 −0.146560 −0.0732798 0.997311i \(-0.523347\pi\)
−0.0732798 + 0.997311i \(0.523347\pi\)
\(420\) 0 0
\(421\) 12.0000i 0.584844i −0.956289 0.292422i \(-0.905539\pi\)
0.956289 0.292422i \(-0.0944612\pi\)
\(422\) 0 0
\(423\) −18.0000 −0.875190
\(424\) 0 0
\(425\) 30.0000i 1.45521i
\(426\) 0 0
\(427\) 18.0000i 0.871081i
\(428\) 0 0
\(429\) 54.0000i 2.60714i
\(430\) 0 0
\(431\) 2.00000i 0.0963366i 0.998839 + 0.0481683i \(0.0153384\pi\)
−0.998839 + 0.0481683i \(0.984662\pi\)
\(432\) 0 0
\(433\) −15.0000 −0.720854 −0.360427 0.932787i \(-0.617369\pi\)
−0.360427 + 0.932787i \(0.617369\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 10.0000i 0.477274i −0.971109 0.238637i \(-0.923299\pi\)
0.971109 0.238637i \(-0.0767006\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) −27.0000 −1.28281 −0.641404 0.767203i \(-0.721648\pi\)
−0.641404 + 0.767203i \(0.721648\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −21.0000 −0.993266
\(448\) 0 0
\(449\) 36.0000i 1.69895i 0.527633 + 0.849473i \(0.323080\pi\)
−0.527633 + 0.849473i \(0.676920\pi\)
\(450\) 0 0
\(451\) −21.0000 −0.988851
\(452\) 0 0
\(453\) 36.0000 1.69143
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 12.0000i 0.561336i −0.959805 0.280668i \(-0.909444\pi\)
0.959805 0.280668i \(-0.0905560\pi\)
\(458\) 0 0
\(459\) 54.0000i 2.52050i
\(460\) 0 0
\(461\) 30.0000i 1.39724i −0.715493 0.698620i \(-0.753798\pi\)
0.715493 0.698620i \(-0.246202\pi\)
\(462\) 0 0
\(463\) 22.0000i 1.02243i 0.859454 + 0.511213i \(0.170804\pi\)
−0.859454 + 0.511213i \(0.829196\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 28.0000i 1.29569i −0.761774 0.647843i \(-0.775671\pi\)
0.761774 0.647843i \(-0.224329\pi\)
\(468\) 0 0
\(469\) 36.0000 1.66233
\(470\) 0 0
\(471\) 63.0000 2.90289
\(472\) 0 0
\(473\) 30.0000i 1.37940i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −66.0000 −3.02193
\(478\) 0 0
\(479\) 26.0000i 1.18797i 0.804476 + 0.593985i \(0.202446\pi\)
−0.804476 + 0.593985i \(0.797554\pi\)
\(480\) 0 0
\(481\) 36.0000 + 6.00000i 1.64146 + 0.273576i
\(482\) 0 0
\(483\) 36.0000i 1.63806i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 6.00000i 0.271886i −0.990717 0.135943i \(-0.956594\pi\)
0.990717 0.135943i \(-0.0434064\pi\)
\(488\) 0 0
\(489\) 60.0000i 2.71329i
\(490\) 0 0
\(491\) −24.0000 −1.08310 −0.541552 0.840667i \(-0.682163\pi\)
−0.541552 + 0.840667i \(0.682163\pi\)
\(492\) 0 0
\(493\) 36.0000 1.62136
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.00000 −0.403705
\(498\) 0 0
\(499\) 32.0000i 1.43252i 0.697835 + 0.716258i \(0.254147\pi\)
−0.697835 + 0.716258i \(0.745853\pi\)
\(500\) 0 0
\(501\) 12.0000i 0.536120i
\(502\) 0 0
\(503\) 40.0000i 1.78351i −0.452517 0.891756i \(-0.649474\pi\)
0.452517 0.891756i \(-0.350526\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 69.0000 3.06440
\(508\) 0 0
\(509\) 11.0000 0.487566 0.243783 0.969830i \(-0.421611\pi\)
0.243783 + 0.969830i \(0.421611\pi\)
\(510\) 0 0
\(511\) 21.0000 0.928985
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −9.00000 −0.395820
\(518\) 0 0
\(519\) 3.00000 0.131685
\(520\) 0 0
\(521\) −7.00000 −0.306676 −0.153338 0.988174i \(-0.549002\pi\)
−0.153338 + 0.988174i \(0.549002\pi\)
\(522\) 0 0
\(523\) 16.0000i 0.699631i 0.936819 + 0.349816i \(0.113756\pi\)
−0.936819 + 0.349816i \(0.886244\pi\)
\(524\) 0 0
\(525\) 45.0000 1.96396
\(526\) 0 0
\(527\) 24.0000 1.04546
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 60.0000i 2.60378i
\(532\) 0 0
\(533\) 42.0000i 1.81922i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 30.0000i 1.29460i
\(538\) 0 0
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) 36.0000i 1.54776i 0.633332 + 0.773880i \(0.281687\pi\)
−0.633332 + 0.773880i \(0.718313\pi\)
\(542\) 0 0
\(543\) −75.0000 −3.21856
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.00000i 0.342055i −0.985266 0.171028i \(-0.945291\pi\)
0.985266 0.171028i \(-0.0547087\pi\)
\(548\) 0 0
\(549\) 36.0000i 1.53644i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 18.0000i 0.765438i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.0000i 0.508456i 0.967144 + 0.254228i \(0.0818214\pi\)
−0.967144 + 0.254228i \(0.918179\pi\)
\(558\) 0 0
\(559\) −60.0000 −2.53773
\(560\) 0 0
\(561\) 54.0000i 2.27988i
\(562\) 0 0
\(563\) 14.0000i 0.590030i −0.955493 0.295015i \(-0.904675\pi\)
0.955493 0.295015i \(-0.0953246\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −27.0000 −1.13389
\(568\) 0 0
\(569\) 6.00000i 0.251533i −0.992060 0.125767i \(-0.959861\pi\)
0.992060 0.125767i \(-0.0401390\pi\)
\(570\) 0 0
\(571\) −15.0000 −0.627730 −0.313865 0.949468i \(-0.601624\pi\)
−0.313865 + 0.949468i \(0.601624\pi\)
\(572\) 0 0
\(573\) 42.0000i 1.75458i
\(574\) 0 0
\(575\) 20.0000i 0.834058i
\(576\) 0 0
\(577\) 36.0000i 1.49870i −0.662174 0.749350i \(-0.730366\pi\)
0.662174 0.749350i \(-0.269634\pi\)
\(578\) 0 0
\(579\) 36.0000i 1.49611i
\(580\) 0 0
\(581\) 27.0000 1.12015
\(582\) 0 0
\(583\) −33.0000 −1.36672
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 32.0000i 1.32078i −0.750922 0.660391i \(-0.770391\pi\)
0.750922 0.660391i \(-0.229609\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 39.0000 1.60425
\(592\) 0 0
\(593\) 47.0000 1.93006 0.965029 0.262142i \(-0.0844289\pi\)
0.965029 + 0.262142i \(0.0844289\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.00000i 0.245564i
\(598\) 0 0
\(599\) 15.0000 0.612883 0.306442 0.951889i \(-0.400862\pi\)
0.306442 + 0.951889i \(0.400862\pi\)
\(600\) 0 0
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) 0 0
\(603\) −72.0000 −2.93207
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 12.0000i 0.487065i −0.969893 0.243532i \(-0.921694\pi\)
0.969893 0.243532i \(-0.0783062\pi\)
\(608\) 0 0
\(609\) 54.0000i 2.18819i
\(610\) 0 0
\(611\) 18.0000i 0.728202i
\(612\) 0 0
\(613\) 25.0000 1.00974 0.504870 0.863195i \(-0.331540\pi\)
0.504870 + 0.863195i \(0.331540\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 19.0000 0.764911 0.382456 0.923974i \(-0.375078\pi\)
0.382456 + 0.923974i \(0.375078\pi\)
\(618\) 0 0
\(619\) −45.0000 −1.80870 −0.904351 0.426789i \(-0.859645\pi\)
−0.904351 + 0.426789i \(0.859645\pi\)
\(620\) 0 0
\(621\) 36.0000i 1.44463i
\(622\) 0 0
\(623\) 36.0000i 1.44231i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −36.0000 6.00000i −1.43541 0.239236i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) −63.0000 −2.50403
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 12.0000i 0.475457i
\(638\) 0 0
\(639\) 18.0000 0.712069
\(640\) 0 0
\(641\) 31.0000 1.22443 0.612213 0.790693i \(-0.290279\pi\)
0.612213 + 0.790693i \(0.290279\pi\)
\(642\) 0 0
\(643\) 42.0000i 1.65632i 0.560493 + 0.828159i \(0.310612\pi\)
−0.560493 + 0.828159i \(0.689388\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.0000i 1.02217i −0.859532 0.511083i \(-0.829245\pi\)
0.859532 0.511083i \(-0.170755\pi\)
\(648\) 0 0
\(649\) 30.0000i 1.17760i
\(650\) 0 0
\(651\) 36.0000i 1.41095i
\(652\) 0 0
\(653\) 24.0000i 0.939193i −0.882881 0.469596i \(-0.844399\pi\)
0.882881 0.469596i \(-0.155601\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −42.0000 −1.63858
\(658\) 0 0
\(659\) −15.0000 −0.584317 −0.292159 0.956370i \(-0.594373\pi\)
−0.292159 + 0.956370i \(0.594373\pi\)
\(660\) 0 0
\(661\) 24.0000i 0.933492i 0.884391 + 0.466746i \(0.154574\pi\)
−0.884391 + 0.466746i \(0.845426\pi\)
\(662\) 0 0
\(663\) −108.000 −4.19437
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 24.0000 0.929284
\(668\) 0 0
\(669\) 45.0000 1.73980
\(670\) 0 0
\(671\) 18.0000i 0.694882i
\(672\) 0 0
\(673\) −9.00000 −0.346925 −0.173462 0.984841i \(-0.555495\pi\)
−0.173462 + 0.984841i \(0.555495\pi\)
\(674\) 0 0
\(675\) −45.0000 −1.73205
\(676\) 0 0
\(677\) 19.0000 0.730229 0.365115 0.930963i \(-0.381030\pi\)
0.365115 + 0.930963i \(0.381030\pi\)
\(678\) 0 0
\(679\) 18.0000i 0.690777i
\(680\) 0 0
\(681\) 84.0000i 3.21889i
\(682\) 0 0
\(683\) 2.00000i 0.0765279i 0.999268 + 0.0382639i \(0.0121828\pi\)
−0.999268 + 0.0382639i \(0.987817\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 27.0000 1.03011
\(688\) 0 0
\(689\) 66.0000i 2.51440i
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) 0 0
\(693\) −54.0000 −2.05129
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 42.0000i 1.59086i
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 6.00000i 0.226617i 0.993560 + 0.113308i \(0.0361448\pi\)
−0.993560 + 0.113308i \(0.963855\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 33.0000 1.24109
\(708\) 0 0
\(709\) 6.00000i 0.225335i −0.993633 0.112667i \(-0.964061\pi\)
0.993633 0.112667i \(-0.0359394\pi\)
\(710\) 0 0
\(711\) 36.0000i 1.35011i
\(712\) 0 0
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6.00000i 0.224074i
\(718\) 0 0
\(719\) −51.0000 −1.90198 −0.950990 0.309223i \(-0.899931\pi\)
−0.950990 + 0.309223i \(0.899931\pi\)
\(720\) 0 0
\(721\) 18.0000i 0.670355i
\(722\) 0 0
\(723\) 54.0000i 2.00828i
\(724\) 0 0
\(725\) 30.0000i 1.11417i
\(726\) 0 0
\(727\) 46.0000i 1.70605i 0.521874 + 0.853023i \(0.325233\pi\)
−0.521874 + 0.853023i \(0.674767\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 60.0000 2.21918
\(732\) 0 0
\(733\) 33.0000 1.21888 0.609441 0.792831i \(-0.291394\pi\)
0.609441 + 0.792831i \(0.291394\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −36.0000 −1.32608
\(738\) 0 0
\(739\) 3.00000 0.110357 0.0551784 0.998477i \(-0.482427\pi\)
0.0551784 + 0.998477i \(0.482427\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 9.00000 0.330178 0.165089 0.986279i \(-0.447209\pi\)
0.165089 + 0.986279i \(0.447209\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −54.0000 −1.97576
\(748\) 0 0
\(749\) −36.0000 −1.31541
\(750\) 0 0
\(751\) −15.0000 −0.547358 −0.273679 0.961821i \(-0.588241\pi\)
−0.273679 + 0.961821i \(0.588241\pi\)
\(752\) 0 0
\(753\) 60.0000i 2.18652i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 18.0000i 0.654221i −0.944986 0.327111i \(-0.893925\pi\)
0.944986 0.327111i \(-0.106075\pi\)
\(758\) 0 0
\(759\) 36.0000i 1.30672i
\(760\) 0 0
\(761\) −1.00000 −0.0362500 −0.0181250 0.999836i \(-0.505770\pi\)
−0.0181250 + 0.999836i \(0.505770\pi\)
\(762\) 0 0
\(763\) 36.0000i 1.30329i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 60.0000 2.16647
\(768\) 0 0
\(769\) 18.0000i 0.649097i −0.945869 0.324548i \(-0.894788\pi\)
0.945869 0.324548i \(-0.105212\pi\)
\(770\) 0 0
\(771\) 54.0000i 1.94476i
\(772\) 0 0
\(773\) −5.00000 −0.179838 −0.0899188 0.995949i \(-0.528661\pi\)
−0.0899188 + 0.995949i \(0.528661\pi\)
\(774\) 0 0
\(775\) 20.0000i 0.718421i
\(776\) 0 0
\(777\) −9.00000 + 54.0000i −0.322873 + 1.93724i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 9.00000 0.322045
\(782\) 0 0
\(783\) 54.0000i 1.92980i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 9.00000 0.320815 0.160408 0.987051i \(-0.448719\pi\)
0.160408 + 0.987051i \(0.448719\pi\)
\(788\) 0 0
\(789\) −81.0000 −2.88368
\(790\) 0 0
\(791\) 18.0000i 0.640006i
\(792\) 0 0
\(793\) 36.0000 1.27840
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18.0000i 0.637593i −0.947823 0.318796i \(-0.896721\pi\)
0.947823 0.318796i \(-0.103279\pi\)
\(798\) 0 0
\(799\) 18.0000i 0.636794i
\(800\) 0 0
\(801\) 72.0000i 2.54399i
\(802\) 0 0
\(803\) −21.0000 −0.741074
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 42.0000 1.47847
\(808\) 0 0
\(809\) 12.0000i 0.421898i −0.977497 0.210949i \(-0.932345\pi\)
0.977497 0.210949i \(-0.0676553\pi\)
\(810\) 0 0
\(811\) 33.0000 1.15879 0.579393 0.815048i \(-0.303290\pi\)
0.579393 + 0.815048i \(0.303290\pi\)
\(812\) 0 0
\(813\) 27.0000 0.946931
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 108.000i 3.77383i
\(820\) 0 0
\(821\) 25.0000 0.872506 0.436253 0.899824i \(-0.356305\pi\)
0.436253 + 0.899824i \(0.356305\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) −45.0000 −1.56670
\(826\) 0 0
\(827\) 4.00000i 0.139094i −0.997579 0.0695468i \(-0.977845\pi\)
0.997579 0.0695468i \(-0.0221553\pi\)
\(828\) 0 0
\(829\) 30.0000i 1.04194i 0.853574 + 0.520972i \(0.174430\pi\)
−0.853574 + 0.520972i \(0.825570\pi\)
\(830\) 0 0
\(831\) 72.0000i 2.49765i
\(832\) 0 0
\(833\) 12.0000i 0.415775i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 36.0000i 1.24434i
\(838\) 0 0
\(839\) 36.0000 1.24286 0.621429 0.783470i \(-0.286552\pi\)
0.621429 + 0.783470i \(0.286552\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 0 0
\(843\) 72.0000i 2.47981i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 6.00000 0.206162
\(848\) 0 0
\(849\) 18.0000i 0.617758i
\(850\) 0 0
\(851\) −24.0000 4.00000i −0.822709 0.137118i
\(852\) 0 0
\(853\) 12.0000i 0.410872i −0.978671 0.205436i \(-0.934139\pi\)
0.978671 0.205436i \(-0.0658613\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 42.0000i 1.43469i −0.696717 0.717346i \(-0.745357\pi\)
0.696717 0.717346i \(-0.254643\pi\)
\(858\) 0 0
\(859\) 14.0000i 0.477674i 0.971060 + 0.238837i \(0.0767661\pi\)
−0.971060 + 0.238837i \(0.923234\pi\)
\(860\) 0 0
\(861\) −63.0000 −2.14703
\(862\) 0 0
\(863\) −48.0000 −1.63394 −0.816970 0.576681i \(-0.804348\pi\)
−0.816970 + 0.576681i \(0.804348\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 57.0000 1.93582
\(868\) 0 0
\(869\) 18.0000i 0.610608i
\(870\) 0 0
\(871\) 72.0000i 2.43963i
\(872\) 0 0
\(873\) 36.0000i 1.21842i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 18.0000 0.607817 0.303908 0.952701i \(-0.401708\pi\)
0.303908 + 0.952701i \(0.401708\pi\)
\(878\) 0 0
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) 6.00000i 0.201916i −0.994891 0.100958i \(-0.967809\pi\)
0.994891 0.100958i \(-0.0321908\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 21.0000 0.705111 0.352555 0.935791i \(-0.385313\pi\)
0.352555 + 0.935791i \(0.385313\pi\)
\(888\) 0 0
\(889\) −9.00000 −0.301850
\(890\) 0 0
\(891\) 27.0000 0.904534
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −72.0000 −2.40401
\(898\) 0 0
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) 66.0000i 2.19878i
\(902\) 0 0
\(903\) 90.0000i 2.99501i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 26.0000i 0.863316i −0.902037 0.431658i \(-0.857929\pi\)
0.902037 0.431658i \(-0.142071\pi\)
\(908\) 0 0
\(909\) −66.0000 −2.18908
\(910\) 0 0
\(911\) 50.0000i 1.65657i 0.560304 + 0.828287i \(0.310684\pi\)
−0.560304 + 0.828287i \(0.689316\pi\)
\(912\) 0 0
\(913\) −27.0000 −0.893570
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.00000i 0.198137i
\(918\) 0 0
\(919\) 48.0000i 1.58337i −0.610927 0.791687i \(-0.709203\pi\)
0.610927 0.791687i \(-0.290797\pi\)
\(920\) 0 0
\(921\) 63.0000 2.07592
\(922\) 0 0
\(923\) 18.0000i 0.592477i
\(924\) 0 0
\(925\) −5.00000 + 30.0000i −0.164399 + 0.986394i
\(926\) 0 0
\(927\) 36.0000i 1.18240i
\(928\) 0 0
\(929\) 46.0000 1.50921 0.754606 0.656179i \(-0.227828\pi\)
0.754606 + 0.656179i \(0.227828\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 48.0000i 1.57145i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −7.00000 −0.228680 −0.114340 0.993442i \(-0.536475\pi\)
−0.114340 + 0.993442i \(0.536475\pi\)
\(938\) 0 0
\(939\) 18.0000i 0.587408i
\(940\) 0 0
\(941\) −10.0000 −0.325991 −0.162995 0.986627i \(-0.552116\pi\)
−0.162995 + 0.986627i \(0.552116\pi\)
\(942\) 0 0
\(943\) 28.0000i 0.911805i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 16.0000i 0.519930i −0.965618 0.259965i \(-0.916289\pi\)
0.965618 0.259965i \(-0.0837111\pi\)
\(948\) 0 0
\(949\) 42.0000i 1.36338i
\(950\) 0 0
\(951\) −30.0000 −0.972817
\(952\) 0 0
\(953\) 43.0000 1.39291 0.696453 0.717602i \(-0.254760\pi\)
0.696453 + 0.717602i \(0.254760\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 54.0000i 1.74557i
\(958\) 0 0
\(959\) −6.00000 −0.193750
\(960\) 0 0
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) 72.0000 2.32017
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 22.0000i 0.707472i 0.935345 + 0.353736i \(0.115089\pi\)
−0.935345 + 0.353736i \(0.884911\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 0 0
\(973\) 36.0000 1.15411
\(974\) 0 0
\(975\) 90.0000i 2.88231i
\(976\) 0 0
\(977\) 12.0000i 0.383914i 0.981403 + 0.191957i \(0.0614834\pi\)
−0.981403 + 0.191957i \(0.938517\pi\)
\(978\) 0 0
\(979\) 36.0000i 1.15056i
\(980\) 0 0
\(981\) 72.0000i 2.29878i
\(982\) 0 0
\(983\) −15.0000 −0.478426 −0.239213 0.970967i \(-0.576889\pi\)
−0.239213 + 0.970967i \(0.576889\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −27.0000 −0.859419
\(988\) 0 0
\(989\) 40.0000 1.27193
\(990\) 0 0
\(991\) 56.0000i 1.77890i −0.457034 0.889449i \(-0.651088\pi\)
0.457034 0.889449i \(-0.348912\pi\)
\(992\) 0 0
\(993\) 72.0000i 2.28485i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 42.0000i 1.33015i 0.746775 + 0.665077i \(0.231601\pi\)
−0.746775 + 0.665077i \(0.768399\pi\)
\(998\) 0 0
\(999\) 9.00000 54.0000i 0.284747 1.70848i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1184.2.g.a.961.1 2
4.3 odd 2 1184.2.g.c.961.1 yes 2
8.3 odd 2 2368.2.g.a.961.2 2
8.5 even 2 2368.2.g.g.961.2 2
37.36 even 2 inner 1184.2.g.a.961.2 yes 2
148.147 odd 2 1184.2.g.c.961.2 yes 2
296.147 odd 2 2368.2.g.a.961.1 2
296.221 even 2 2368.2.g.g.961.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1184.2.g.a.961.1 2 1.1 even 1 trivial
1184.2.g.a.961.2 yes 2 37.36 even 2 inner
1184.2.g.c.961.1 yes 2 4.3 odd 2
1184.2.g.c.961.2 yes 2 148.147 odd 2
2368.2.g.a.961.1 2 296.147 odd 2
2368.2.g.a.961.2 2 8.3 odd 2
2368.2.g.g.961.1 2 296.221 even 2
2368.2.g.g.961.2 2 8.5 even 2