L(s) = 1 | + 4·5-s − 6·9-s + 4·13-s + 4·17-s + 2·25-s − 12·29-s − 2·37-s − 4·41-s − 24·45-s + 2·49-s − 12·53-s − 12·61-s + 16·65-s + 28·73-s + 27·81-s + 16·85-s − 12·89-s + 20·97-s − 12·101-s + 4·109-s + 20·113-s − 24·117-s − 22·121-s − 28·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 1.78·5-s − 2·9-s + 1.10·13-s + 0.970·17-s + 2/5·25-s − 2.22·29-s − 0.328·37-s − 0.624·41-s − 3.57·45-s + 2/7·49-s − 1.64·53-s − 1.53·61-s + 1.98·65-s + 3.27·73-s + 3·81-s + 1.73·85-s − 1.27·89-s + 2.03·97-s − 1.19·101-s + 0.383·109-s + 1.88·113-s − 2.21·117-s − 2·121-s − 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.75719220170824942128020627833, −7.44643679398612564054429895074, −6.53662216607494549214962948413, −6.22415831207096217368749210189, −6.04755779498159347807544806648, −5.46349139552603568969562413832, −5.41123543087893400462645312371, −4.88253984327955854319240680173, −3.85223878389055117023714736235, −3.50211556528427241737853655370, −3.06051561029494874253606536430, −2.30384470940550542264449691743, −1.93554368244305693557513075885, −1.26629318215268350130600876569, 0,
1.26629318215268350130600876569, 1.93554368244305693557513075885, 2.30384470940550542264449691743, 3.06051561029494874253606536430, 3.50211556528427241737853655370, 3.85223878389055117023714736235, 4.88253984327955854319240680173, 5.41123543087893400462645312371, 5.46349139552603568969562413832, 6.04755779498159347807544806648, 6.22415831207096217368749210189, 6.53662216607494549214962948413, 7.44643679398612564054429895074, 7.75719220170824942128020627833