L(s) = 1 | − 3-s + 5-s − 2·7-s − 2·9-s + 5·11-s + 13-s − 15-s − 12·19-s + 2·21-s − 13·23-s − 6·25-s + 2·27-s + 17·29-s + 7·31-s − 5·33-s − 2·35-s − 2·37-s − 39-s − 3·41-s − 10·43-s − 2·45-s + 14·47-s + 2·49-s + 5·55-s + 12·57-s + 2·59-s + 23·61-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s − 0.755·7-s − 2/3·9-s + 1.50·11-s + 0.277·13-s − 0.258·15-s − 2.75·19-s + 0.436·21-s − 2.71·23-s − 6/5·25-s + 0.384·27-s + 3.15·29-s + 1.25·31-s − 0.870·33-s − 0.338·35-s − 0.328·37-s − 0.160·39-s − 0.468·41-s − 1.52·43-s − 0.298·45-s + 2.04·47-s + 2/7·49-s + 0.674·55-s + 1.58·57-s + 0.260·59-s + 2.94·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9425841540\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9425841540\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09960582002453701257894410815, −9.963460755112151338624830905646, −8.943854945662757157937241373598, −8.674336089783039926021976792535, −8.463664478980694963502963240164, −8.216408754016141865913079152758, −7.42297529838422902198437690780, −6.72157624988627834397632366493, −6.48625207796035164603295262163, −6.30015135281531494270633288363, −5.86805185903757459088297366943, −5.63940767246395053833543933412, −4.55219772207833511488666846089, −4.45323139034592646033772308443, −3.88442803170269894227520402645, −3.49603303620635248158138670885, −2.47716742101795544253290290498, −2.30223276890911450164254648777, −1.46642681154165862007639293788, −0.43384436622137302076375624906,
0.43384436622137302076375624906, 1.46642681154165862007639293788, 2.30223276890911450164254648777, 2.47716742101795544253290290498, 3.49603303620635248158138670885, 3.88442803170269894227520402645, 4.45323139034592646033772308443, 4.55219772207833511488666846089, 5.63940767246395053833543933412, 5.86805185903757459088297366943, 6.30015135281531494270633288363, 6.48625207796035164603295262163, 6.72157624988627834397632366493, 7.42297529838422902198437690780, 8.216408754016141865913079152758, 8.463664478980694963502963240164, 8.674336089783039926021976792535, 8.943854945662757157937241373598, 9.963460755112151338624830905646, 10.09960582002453701257894410815