Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 23 x + 251 x^{2} - 1403 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.175618717362$, $\pm0.286807421120$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.188773.1 |
Galois group: | $D_{4}$ |
Jacobians: | $15$ |
Isomorphism classes: | 15 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2547$ | $13751253$ | $51734941623$ | $191860795907973$ | $713398549244422032$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $39$ | $3695$ | $227925$ | $13856923$ | $844662174$ | $51520531583$ | $3142741955973$ | $191707304479699$ | $11694146093293383$ | $713342911991630390$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which all are hyperelliptic):
- $y^2=44 x^6+24 x^5+31 x^4+2 x^3+42 x^2+12 x+42$
- $y^2=50 x^6+19 x^5+15 x^4+28 x^3+40 x^2+19 x+33$
- $y^2=6 x^6+7 x^5+23 x^4+46 x^3+45 x^2+39 x+51$
- $y^2=51 x^6+45 x^5+26 x^4+26 x^3+42 x^2+44 x+39$
- $y^2=28 x^6+25 x^5+53 x^4+6 x^3+36 x^2+44 x+45$
- $y^2=55 x^6+2 x^5+2 x^4+40 x^3+17 x^2+46 x+46$
- $y^2=54 x^6+28 x^5+2 x^4+7 x^3+35 x^2+x+32$
- $y^2=29 x^6+28 x^5+12 x^4+40 x^3+11 x^2+57 x+50$
- $y^2=55 x^6+60 x^5+45 x^4+33 x^3+22 x^2+36 x+30$
- $y^2=31 x^6+23 x^5+46 x^4+37 x^3+21 x^2+47 x+10$
- $y^2=21 x^6+51 x^5+50 x^4+21 x^3+25 x^2+18 x+47$
- $y^2=44 x^6+42 x^5+32 x^4+18 x^3+35 x^2+20 x+43$
- $y^2=43 x^6+24 x^5+56 x^4+27 x^3+35 x^2+58 x+35$
- $y^2=29 x^6+3 x^5+25 x^4+27 x^3+22 x^2+50 x+35$
- $y^2=12 x^6+31 x^5+2 x^4+2 x^3+58 x^2+52 x+9$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is 4.0.188773.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.x_jr | $2$ | (not in LMFDB) |