Properties

Label 2.61.ax_jr
Base field $\F_{61}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{61}$
Dimension:  $2$
L-polynomial:  $1 - 23 x + 251 x^{2} - 1403 x^{3} + 3721 x^{4}$
Frobenius angles:  $\pm0.175618717362$, $\pm0.286807421120$
Angle rank:  $2$ (numerical)
Number field:  4.0.188773.1
Galois group:  $D_{4}$
Jacobians:  $15$
Isomorphism classes:  15

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2547$ $13751253$ $51734941623$ $191860795907973$ $713398549244422032$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $39$ $3695$ $227925$ $13856923$ $844662174$ $51520531583$ $3142741955973$ $191707304479699$ $11694146093293383$ $713342911991630390$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{61}$.

Endomorphism algebra over $\F_{61}$
The endomorphism algebra of this simple isogeny class is 4.0.188773.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.x_jr$2$(not in LMFDB)