Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 14 x + 130 x^{2} - 658 x^{3} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.218509614070$, $\pm0.420369419000$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2252432.3 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1668$ | $5024016$ | $10856593332$ | $23819543122176$ | $52599192866020308$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $34$ | $2274$ | $104566$ | $4881374$ | $229345274$ | $10779345954$ | $506624388878$ | $23811283875838$ | $1119130354569010$ | $52599131484595554$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=33 x^6+35 x^5+40 x^4+36 x^3+32 x^2+3 x+6$
- $y^2=10 x^6+44 x^5+36 x^4+11 x^3+10 x^2+22 x+17$
- $y^2=30 x^6+31 x^5+11 x^4+7 x^3+34 x^2+11 x+19$
- $y^2=13 x^6+12 x^5+31 x^4+8 x^3+20 x^2+15 x+21$
- $y^2=45 x^6+44 x^5+29 x^4+43 x^2+36 x+41$
- $y^2=19 x^6+40 x^5+27 x^4+19 x^3+12 x^2+17 x+45$
- $y^2=33 x^6+32 x^5+11 x^4+13 x^3+3 x^2+12 x+12$
- $y^2=11 x^6+28 x^5+36 x^4+37 x^3+4 x^2+43 x+20$
- $y^2=23 x^6+16 x^5+12 x^4+4 x^3+x^2+32 x+45$
- $y^2=28 x^6+17 x^5+40 x^4+22 x^3+25 x^2+24 x+27$
- $y^2=39 x^6+16 x^5+40 x^4+24 x^3+14 x^2+41 x+46$
- $y^2=33 x^6+x^5+17 x^4+14 x^3+10 x^2+20 x+27$
- $y^2=33 x^6+28 x^5+32 x^4+36 x^3+2 x^2+24 x+26$
- $y^2=41 x^6+x^5+36 x^4+5 x^3+39 x^2+34 x+24$
- $y^2=6 x^6+20 x^5+30 x^4+7 x^3+22 x^2+16 x+20$
- $y^2=31 x^6+28 x^5+26 x^4+46 x^3+8 x^2+37 x+10$
- $y^2=44 x^6+13 x^5+3 x^4+40 x^3+41 x^2+14 x+12$
- $y^2=10 x^6+3 x^5+18 x^4+27 x^3+20 x^2+41 x+16$
- $y^2=34 x^6+30 x^5+42 x^4+36 x^3+22 x^2+23 x+30$
- $y^2=25 x^6+41 x^5+23 x^4+x^3+33 x^2+41 x+18$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is 4.0.2252432.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.o_fa | $2$ | (not in LMFDB) |