-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1668, 'abvar_counts': [1668, 5024016, 10856593332, 23819543122176, 52599192866020308, 116192891156412135312, 256667628796354458088548, 566977306152142009664114688, 1252452883172488120406122357284, 2766668672448053460457157731664016], 'abvar_counts_str': '1668 5024016 10856593332 23819543122176 52599192866020308 116192891156412135312 256667628796354458088548 566977306152142009664114688 1252452883172488120406122357284 2766668672448053460457157731664016 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.218509614070446, 0.420369418999961], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 34, 'curve_counts': [34, 2274, 104566, 4881374, 229345274, 10779345954, 506624388878, 23811283875838, 1119130354569010, 52599131484595554], 'curve_counts_str': '34 2274 104566 4881374 229345274 10779345954 506624388878 23811283875838 1119130354569010 52599131484595554 ', 'curves': ['y^2=33*x^6+35*x^5+40*x^4+36*x^3+32*x^2+3*x+6', 'y^2=10*x^6+44*x^5+36*x^4+11*x^3+10*x^2+22*x+17', 'y^2=30*x^6+31*x^5+11*x^4+7*x^3+34*x^2+11*x+19', 'y^2=13*x^6+12*x^5+31*x^4+8*x^3+20*x^2+15*x+21', 'y^2=45*x^6+44*x^5+29*x^4+43*x^2+36*x+41', 'y^2=19*x^6+40*x^5+27*x^4+19*x^3+12*x^2+17*x+45', 'y^2=33*x^6+32*x^5+11*x^4+13*x^3+3*x^2+12*x+12', 'y^2=11*x^6+28*x^5+36*x^4+37*x^3+4*x^2+43*x+20', 'y^2=23*x^6+16*x^5+12*x^4+4*x^3+x^2+32*x+45', 'y^2=28*x^6+17*x^5+40*x^4+22*x^3+25*x^2+24*x+27', 'y^2=39*x^6+16*x^5+40*x^4+24*x^3+14*x^2+41*x+46', 'y^2=33*x^6+x^5+17*x^4+14*x^3+10*x^2+20*x+27', 'y^2=33*x^6+28*x^5+32*x^4+36*x^3+2*x^2+24*x+26', 'y^2=41*x^6+x^5+36*x^4+5*x^3+39*x^2+34*x+24', 'y^2=6*x^6+20*x^5+30*x^4+7*x^3+22*x^2+16*x+20', 'y^2=31*x^6+28*x^5+26*x^4+46*x^3+8*x^2+37*x+10', 'y^2=44*x^6+13*x^5+3*x^4+40*x^3+41*x^2+14*x+12', 'y^2=10*x^6+3*x^5+18*x^4+27*x^3+20*x^2+41*x+16', 'y^2=34*x^6+30*x^5+42*x^4+36*x^3+22*x^2+23*x+30', 'y^2=25*x^6+41*x^5+23*x^4+x^3+33*x^2+41*x+18', 'y^2=10*x^6+x^5+42*x^4+28*x^3+17*x^2+28*x+45', 'y^2=12*x^6+42*x^5+29*x^4+32*x^3+38*x^2+9*x+9', 'y^2=12*x^6+7*x^5+21*x^4+42*x^3+37*x^2+35*x+43', 'y^2=36*x^6+41*x^5+27*x^4+x^3+9*x^2+41*x+11', 'y^2=30*x^6+24*x^5+2*x^4+3*x^3+x^2+8*x+32', 'y^2=44*x^6+24*x^5+23*x^4+2*x^3+7*x^2+13*x+43', 'y^2=45*x^6+29*x^5+15*x^4+43*x^3+12*x^2+23*x+22', 'y^2=26*x^6+45*x^5+20*x^4+13*x^3+x^2+6*x+23', 'y^2=21*x^6+17*x^4+39*x^3+19*x^2+21*x+15', 'y^2=46*x^6+11*x^5+4*x^4+21*x^3+35*x^2+30*x+25', 'y^2=8*x^6+11*x^5+x^4+42*x^3+28*x^2+7*x+10', 'y^2=39*x^6+11*x^5+19*x^4+17*x^3+39*x^2+19*x+30', 'y^2=40*x^6+40*x^5+20*x^4+41*x^3+41*x^2+34*x+19', 'y^2=41*x^5+8*x^4+32*x^3+19*x^2+42*x+24', 'y^2=44*x^6+10*x^5+20*x^4+34*x^3+46*x^2+44*x+19', 'y^2=32*x^6+24*x^5+5*x^4+26*x^3+21*x^2+36*x+7', 'y^2=46*x^6+34*x^5+44*x^4+29*x^3+19*x^2+20*x+15', 'y^2=46*x^6+4*x^5+44*x^4+30*x^3+19*x^2+25*x+17', 'y^2=30*x^6+6*x^5+43*x^4+10*x^3+4*x^2+8*x+35', 'y^2=12*x^6+16*x^5+40*x^4+39*x^3+18*x^2+38*x+46', 'y^2=16*x^6+30*x^5+23*x^4+x^3+4*x^2+37*x+33', 'y^2=25*x^5+25*x^4+7*x^3+46*x^2+23*x+20', 'y^2=15*x^6+31*x^5+4*x^4+5*x^3+7*x^2+35*x+38', 'y^2=40*x^6+26*x^5+9*x^4+12*x^3+2*x^2+13*x+11', 'y^2=34*x^6+2*x^5+17*x^4+21*x^3+5*x^2+14*x+44', 'y^2=40*x^6+45*x^5+22*x^4+30*x^3+15*x^2+41', 'y^2=40*x^6+36*x^5+17*x^4+33*x^3+43*x^2+31*x+18', 'y^2=8*x^6+2*x^5+4*x^4+7*x^3+6*x^2+29*x+30', 'y^2=13*x^5+23*x^4+39*x^3+46*x^2+21*x+32', 'y^2=17*x^6+7*x^5+37*x^4+9*x^3+7*x^2+13*x+41', 'y^2=45*x^6+19*x^5+40*x^4+33*x^3+26*x^2+26*x+10', 'y^2=40*x^6+21*x^5+22*x^4+31*x^3+x^2+29*x+19', 'y^2=15*x^6+6*x^5+3*x^4+18*x^3+27*x^2+3*x+18', 'y^2=7*x^6+46*x^5+31*x^4+28*x^3+43*x^2+12*x+44', 'y^2=41*x^6+25*x^5+28*x^4+27*x^3+5*x^2+5*x+10', 'y^2=39*x^6+38*x^5+2*x^3+8*x^2+17*x+12', 'y^2=24*x^6+46*x^5+16*x^4+35*x^3+12*x^2+44*x+2', 'y^2=14*x^6+44*x^5+3*x^4+40*x^3+32*x^2+16*x+3', 'y^2=16*x^6+43*x^5+42*x^4+29*x^3+24*x^2+45*x+23', 'y^2=44*x^6+25*x^5+12*x^4+33*x^3+20*x^2+23*x+31', 'y^2=x^6+25*x^5+11*x^4+19*x^3+28*x^2+29*x+26', 'y^2=30*x^6+5*x^5+17*x^4+32*x^3+2*x^2+9*x+30', 'y^2=7*x^6+42*x^5+25*x^4+3*x^3+3*x^2+43*x+20', 'y^2=18*x^6+44*x^5+35*x^4+23*x^3+25*x', 'y^2=19*x^6+13*x^5+8*x^4+30*x^3+16*x^2+22*x+43', 'y^2=30*x^6+16*x^5+6*x^4+19*x^3+25*x^2+6*x+37', 'y^2=42*x^6+33*x^5+23*x^4+38*x^3+25*x^2+2*x+24', 'y^2=16*x^6+2*x^5+39*x^4+43*x^3+26*x^2+38*x+46', 'y^2=43*x^6+33*x^5+44*x^4+3*x^3+39*x^2+18*x+30', 'y^2=37*x^6+40*x^5+3*x^4+22*x^3+3*x^2+20*x+35', 'y^2=46*x^6+20*x^5+18*x^4+2*x^3+32*x^2+4*x+16', 'y^2=28*x^6+46*x^5+7*x^4+9*x^3+26*x^2+x+41'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 3, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.2252432.3'], 'geometric_splitting_field': '4.0.2252432.3', 'geometric_splitting_polynomials': [[833, 0, 63, 0, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 72, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 72, 'label': '2.47.ao_fa', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.2252432.3'], 'p': 47, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -14, 130, -658, 2209], 'poly_str': '1 -14 130 -658 2209 ', 'primitive_models': [], 'q': 47, 'real_poly': [1, -14, 36], 'simple_distinct': ['2.47.ao_fa'], 'simple_factors': ['2.47.ao_faA'], 'simple_multiplicities': [1], 'singular_primes': ['2,F^2-10*F-3*V+44'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.2252432.3', 'splitting_polynomials': [[833, 0, 63, 0, 1]], 'twist_count': 2, 'twists': [['2.47.o_fa', '2.2209.cm_ehi', 2]], 'weak_equivalence_count': 3, 'zfv_index': 4, 'zfv_index_factorization': [[2, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 13328, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,F^2-10*F-3*V+44']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.47.ao_fa', 'extension_degree': 1, 'extension_label': '2.47.ao_fa', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.2252432.3', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.47.ao_fa', 'galois_group': '4T3', 'places': [['38', '7', '46', '0'], ['9', '7', '1', '0']]}