Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 16 x + 206 x^{2} - 1552 x^{3} + 9409 x^{4}$ |
Frobenius angles: | $\pm0.219142940476$, $\pm0.487248214836$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.40053.1 |
Galois group: | $D_{4}$ |
Jacobians: | $412$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8048$ | $90008832$ | $834010835696$ | $7837331107958784$ | $73743616164352863728$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $82$ | $9566$ | $913810$ | $88528126$ | $8587480402$ | $832974780638$ | $80798287537042$ | $7837433299904254$ | $760231056302146642$ | $73742412691146326366$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 412 curves (of which all are hyperelliptic):
- $y^2=29 x^6+51 x^5+72 x^4+12 x^3+70 x^2+64 x+18$
- $y^2=13 x^6+85 x^5+14 x^4+56 x^3+48 x^2+21 x+68$
- $y^2=2 x^6+95 x^5+22 x^4+26 x^3+3 x^2+33 x+25$
- $y^2=90 x^6+44 x^5+29 x^4+69 x^3+42 x+89$
- $y^2=90 x^6+28 x^5+11 x^4+33 x^3+11 x^2+44 x+7$
- $y^2=59 x^6+11 x^5+58 x^4+54 x^3+24 x^2+51 x+4$
- $y^2=84 x^6+28 x^5+71 x^4+14 x^3+44 x^2+87 x+58$
- $y^2=92 x^6+77 x^5+95 x^4+80 x^3+25 x^2+24 x+37$
- $y^2=9 x^6+73 x^5+35 x^4+4 x^3+34 x^2+18 x+38$
- $y^2=25 x^6+44 x^5+73 x^4+76 x^3+20 x^2+16 x+31$
- $y^2=66 x^5+84 x^4+12 x^3+88 x^2+60 x+76$
- $y^2=19 x^6+45 x^5+47 x^4+25 x^3+13 x^2+47 x+7$
- $y^2=36 x^6+66 x^5+65 x^4+47 x^3+75 x^2+22 x+86$
- $y^2=2 x^6+80 x^5+78 x^4+10 x^3+91 x^2+54 x+57$
- $y^2=51 x^6+94 x^5+91 x^4+17 x^3+90 x^2+44 x+24$
- $y^2=51 x^6+55 x^5+68 x^4+40 x^3+81 x^2+72 x+19$
- $y^2=69 x^6+36 x^5+52 x^4+53 x^3+25 x^2+72 x+53$
- $y^2=51 x^6+33 x^5+43 x^4+2 x^3+5 x^2+47 x+13$
- $y^2=7 x^6+45 x^5+78 x^4+36 x^3+91 x^2+51 x+43$
- $y^2=39 x^6+56 x^5+90 x^4+53 x^3+58 x^2+93 x+83$
- and 392 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is 4.0.40053.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.97.q_hy | $2$ | (not in LMFDB) |