Properties

Label 2.83.u_ig
Base field $\F_{83}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{83}$
Dimension:  $2$
L-polynomial:  $1 + 20 x + 214 x^{2} + 1660 x^{3} + 6889 x^{4}$
Frobenius angles:  $\pm0.548912980956$, $\pm0.893532509847$
Angle rank:  $2$ (numerical)
Number field:  4.0.122525.3
Galois group:  $D_{4}$
Jacobians:  $184$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $8784$ $47644416$ $327021020496$ $2251607254511616$ $15516334652501459664$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $104$ $6918$ $571928$ $47443886$ $3939115144$ $326941547382$ $27136034565688$ $2252292285158878$ $186940255259776424$ $15516041195190859878$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 184 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{83}$.

Endomorphism algebra over $\F_{83}$
The endomorphism algebra of this simple isogeny class is 4.0.122525.3.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.au_ig$2$(not in LMFDB)