Properties

Label 2-9900-1.1-c1-0-34
Degree $2$
Conductor $9900$
Sign $1$
Analytic cond. $79.0518$
Root an. cond. $8.89111$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s + 11-s + 4·13-s − 6·17-s + 2·19-s − 4·31-s + 10·37-s + 4·43-s + 12·47-s + 9·49-s + 6·53-s − 12·59-s − 10·61-s + 4·67-s − 8·73-s + 4·77-s − 10·79-s − 6·83-s + 6·89-s + 16·91-s + 10·97-s + 12·101-s + 16·103-s + 18·107-s + 14·109-s − 6·113-s − 24·119-s + ⋯
L(s)  = 1  + 1.51·7-s + 0.301·11-s + 1.10·13-s − 1.45·17-s + 0.458·19-s − 0.718·31-s + 1.64·37-s + 0.609·43-s + 1.75·47-s + 9/7·49-s + 0.824·53-s − 1.56·59-s − 1.28·61-s + 0.488·67-s − 0.936·73-s + 0.455·77-s − 1.12·79-s − 0.658·83-s + 0.635·89-s + 1.67·91-s + 1.01·97-s + 1.19·101-s + 1.57·103-s + 1.74·107-s + 1.34·109-s − 0.564·113-s − 2.20·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(79.0518\)
Root analytic conductor: \(8.89111\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.859295638\)
\(L(\frac12)\) \(\approx\) \(2.859295638\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59196520383050307088764456269, −7.18895779369100601835410432634, −6.08739090114993401873713499957, −5.79873339296443103552506706726, −4.63750347994035412206500539666, −4.42928745039523348994919550629, −3.51585403649731787806164371474, −2.43376824322462399942956818820, −1.69530465422291409652423476652, −0.850346386070725796232646431876, 0.850346386070725796232646431876, 1.69530465422291409652423476652, 2.43376824322462399942956818820, 3.51585403649731787806164371474, 4.42928745039523348994919550629, 4.63750347994035412206500539666, 5.79873339296443103552506706726, 6.08739090114993401873713499957, 7.18895779369100601835410432634, 7.59196520383050307088764456269

Graph of the $Z$-function along the critical line