L(s) = 1 | − 2-s + 4-s + 5-s − 7-s − 8-s − 10-s + 11-s + 2·13-s + 14-s + 16-s + 3·17-s − 19-s + 20-s − 22-s − 6·23-s + 25-s − 2·26-s − 28-s + 9·29-s + 5·31-s − 32-s − 3·34-s − 35-s + 5·37-s + 38-s − 40-s + 6·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.377·7-s − 0.353·8-s − 0.316·10-s + 0.301·11-s + 0.554·13-s + 0.267·14-s + 1/4·16-s + 0.727·17-s − 0.229·19-s + 0.223·20-s − 0.213·22-s − 1.25·23-s + 1/5·25-s − 0.392·26-s − 0.188·28-s + 1.67·29-s + 0.898·31-s − 0.176·32-s − 0.514·34-s − 0.169·35-s + 0.821·37-s + 0.162·38-s − 0.158·40-s + 0.937·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.255045844\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.255045844\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 + T \) | |
| 3 | \( 1 \) | |
| 5 | \( 1 - T \) | |
| 11 | \( 1 - T \) | |
good | 7 | \( 1 + T + p T^{2} \) | 1.7.b |
| 13 | \( 1 - 2 T + p T^{2} \) | 1.13.ac |
| 17 | \( 1 - 3 T + p T^{2} \) | 1.17.ad |
| 19 | \( 1 + T + p T^{2} \) | 1.19.b |
| 23 | \( 1 + 6 T + p T^{2} \) | 1.23.g |
| 29 | \( 1 - 9 T + p T^{2} \) | 1.29.aj |
| 31 | \( 1 - 5 T + p T^{2} \) | 1.31.af |
| 37 | \( 1 - 5 T + p T^{2} \) | 1.37.af |
| 41 | \( 1 - 6 T + p T^{2} \) | 1.41.ag |
| 43 | \( 1 - 8 T + p T^{2} \) | 1.43.ai |
| 47 | \( 1 + 6 T + p T^{2} \) | 1.47.g |
| 53 | \( 1 + 9 T + p T^{2} \) | 1.53.j |
| 59 | \( 1 + 6 T + p T^{2} \) | 1.59.g |
| 61 | \( 1 - 5 T + p T^{2} \) | 1.61.af |
| 67 | \( 1 - 8 T + p T^{2} \) | 1.67.ai |
| 71 | \( 1 - 9 T + p T^{2} \) | 1.71.aj |
| 73 | \( 1 + 10 T + p T^{2} \) | 1.73.k |
| 79 | \( 1 - 14 T + p T^{2} \) | 1.79.ao |
| 83 | \( 1 - 6 T + p T^{2} \) | 1.83.ag |
| 89 | \( 1 - 15 T + p T^{2} \) | 1.89.ap |
| 97 | \( 1 - 8 T + p T^{2} \) | 1.97.ai |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.900644837886677785252306885337, −9.294590332604971431148449515005, −8.314508164306764218153890133792, −7.70320275972573415215277517697, −6.35617994352118581778333245655, −6.16796104705620069370395766607, −4.74678972517937266227607875193, −3.50175572568055485077789703191, −2.36960434415895320515592173192, −1.01387845585409869711704819393,
1.01387845585409869711704819393, 2.36960434415895320515592173192, 3.50175572568055485077789703191, 4.74678972517937266227607875193, 6.16796104705620069370395766607, 6.35617994352118581778333245655, 7.70320275972573415215277517697, 8.314508164306764218153890133792, 9.294590332604971431148449515005, 9.900644837886677785252306885337