Properties

Label 2-96330-1.1-c1-0-4
Degree $2$
Conductor $96330$
Sign $1$
Analytic cond. $769.198$
Root an. cond. $27.7344$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s + 2·11-s − 12-s − 15-s + 16-s − 2·17-s − 18-s − 19-s + 20-s − 2·22-s − 5·23-s + 24-s + 25-s − 27-s + 6·29-s + 30-s + 31-s − 32-s − 2·33-s + 2·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.603·11-s − 0.288·12-s − 0.258·15-s + 1/4·16-s − 0.485·17-s − 0.235·18-s − 0.229·19-s + 0.223·20-s − 0.426·22-s − 1.04·23-s + 0.204·24-s + 1/5·25-s − 0.192·27-s + 1.11·29-s + 0.182·30-s + 0.179·31-s − 0.176·32-s − 0.348·33-s + 0.342·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 96330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 96330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(96330\)    =    \(2 \cdot 3 \cdot 5 \cdot 13^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(769.198\)
Root analytic conductor: \(27.7344\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 96330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7317094449\)
\(L(\frac12)\) \(\approx\) \(0.7317094449\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 \)
19 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 9 T + p T^{2} \) 1.37.j
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.81287581735782, −13.38281838748589, −12.59577979441889, −12.14151962370166, −11.94974694491033, −11.19555621896940, −10.82517810600810, −10.21916121977146, −10.00777459003625, −9.243504984621052, −8.985901301116366, −8.240168901804676, −7.936863824914322, −7.094948958633944, −6.655302138325609, −6.320104762862926, −5.755255037024827, −5.096825417478648, −4.540579105453472, −3.900176044454537, −3.182976403272842, −2.479777329263240, −1.703851819315716, −1.347739485476306, −0.3166197341552121, 0.3166197341552121, 1.347739485476306, 1.703851819315716, 2.479777329263240, 3.182976403272842, 3.900176044454537, 4.540579105453472, 5.096825417478648, 5.755255037024827, 6.320104762862926, 6.655302138325609, 7.094948958633944, 7.936863824914322, 8.240168901804676, 8.985901301116366, 9.243504984621052, 10.00777459003625, 10.21916121977146, 10.82517810600810, 11.19555621896940, 11.94974694491033, 12.14151962370166, 12.59577979441889, 13.38281838748589, 13.81287581735782

Graph of the $Z$-function along the critical line