Properties

Label 2-9386-1.1-c1-0-305
Degree $2$
Conductor $9386$
Sign $-1$
Analytic cond. $74.9475$
Root an. cond. $8.65722$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s − 8-s + 9-s + 3·11-s + 2·12-s − 13-s + 16-s + 7·17-s − 18-s − 3·22-s − 4·23-s − 2·24-s − 5·25-s + 26-s − 4·27-s − 3·29-s − 3·31-s − 32-s + 6·33-s − 7·34-s + 36-s − 2·39-s − 10·41-s − 6·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s − 0.353·8-s + 1/3·9-s + 0.904·11-s + 0.577·12-s − 0.277·13-s + 1/4·16-s + 1.69·17-s − 0.235·18-s − 0.639·22-s − 0.834·23-s − 0.408·24-s − 25-s + 0.196·26-s − 0.769·27-s − 0.557·29-s − 0.538·31-s − 0.176·32-s + 1.04·33-s − 1.20·34-s + 1/6·36-s − 0.320·39-s − 1.56·41-s − 0.914·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9386\)    =    \(2 \cdot 13 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(74.9475\)
Root analytic conductor: \(8.65722\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9386,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
13 \( 1 + T \)
19 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 13 T + p T^{2} \) 1.53.n
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60813900470629436081590957221, −6.96037695904906590046849789480, −6.07134327053067925547020726212, −5.48666233684396559822943441992, −4.36651204663874425703938926936, −3.39725444899692812604505244126, −3.21339795383222764825468351311, −1.94667677366717441752939715034, −1.51679629617059751376945059021, 0, 1.51679629617059751376945059021, 1.94667677366717441752939715034, 3.21339795383222764825468351311, 3.39725444899692812604505244126, 4.36651204663874425703938926936, 5.48666233684396559822943441992, 6.07134327053067925547020726212, 6.96037695904906590046849789480, 7.60813900470629436081590957221

Graph of the $Z$-function along the critical line