Properties

Label 2-9280-1.1-c1-0-118
Degree $2$
Conductor $9280$
Sign $1$
Analytic cond. $74.1011$
Root an. cond. $8.60820$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 4·7-s + 9-s + 2·13-s + 2·15-s − 4·17-s + 8·21-s + 25-s − 4·27-s + 29-s + 4·35-s + 4·37-s + 4·39-s − 2·41-s − 2·43-s + 45-s + 10·47-s + 9·49-s − 8·51-s + 6·53-s + 4·59-s + 6·61-s + 4·63-s + 2·65-s − 8·71-s + 8·73-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s + 0.554·13-s + 0.516·15-s − 0.970·17-s + 1.74·21-s + 1/5·25-s − 0.769·27-s + 0.185·29-s + 0.676·35-s + 0.657·37-s + 0.640·39-s − 0.312·41-s − 0.304·43-s + 0.149·45-s + 1.45·47-s + 9/7·49-s − 1.12·51-s + 0.824·53-s + 0.520·59-s + 0.768·61-s + 0.503·63-s + 0.248·65-s − 0.949·71-s + 0.936·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9280\)    =    \(2^{6} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(74.1011\)
Root analytic conductor: \(8.60820\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.442596604\)
\(L(\frac12)\) \(\approx\) \(4.442596604\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82079890495479562837247847722, −7.27739777411206411784024345965, −6.36788398869507872039672729275, −5.60700242583618116752955932203, −4.85134377056124920196551200124, −4.17721031928201196851487823607, −3.41817528737008268459457629551, −2.35479813084154708763285355293, −2.03875198641364373710104072858, −0.996657381013282201555666418605, 0.996657381013282201555666418605, 2.03875198641364373710104072858, 2.35479813084154708763285355293, 3.41817528737008268459457629551, 4.17721031928201196851487823607, 4.85134377056124920196551200124, 5.60700242583618116752955932203, 6.36788398869507872039672729275, 7.27739777411206411784024345965, 7.82079890495479562837247847722

Graph of the $Z$-function along the critical line