L(s) = 1 | + 2·3-s + 5-s + 4·7-s + 9-s + 2·13-s + 2·15-s − 4·17-s + 8·21-s + 25-s − 4·27-s + 29-s + 4·35-s + 4·37-s + 4·39-s − 2·41-s − 2·43-s + 45-s + 10·47-s + 9·49-s − 8·51-s + 6·53-s + 4·59-s + 6·61-s + 4·63-s + 2·65-s − 8·71-s + 8·73-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s + 0.554·13-s + 0.516·15-s − 0.970·17-s + 1.74·21-s + 1/5·25-s − 0.769·27-s + 0.185·29-s + 0.676·35-s + 0.657·37-s + 0.640·39-s − 0.312·41-s − 0.304·43-s + 0.149·45-s + 1.45·47-s + 9/7·49-s − 1.12·51-s + 0.824·53-s + 0.520·59-s + 0.768·61-s + 0.503·63-s + 0.248·65-s − 0.949·71-s + 0.936·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.442596604\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.442596604\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 \) | |
| 5 | \( 1 - T \) | |
| 29 | \( 1 - T \) | |
good | 3 | \( 1 - 2 T + p T^{2} \) | 1.3.ac |
| 7 | \( 1 - 4 T + p T^{2} \) | 1.7.ae |
| 11 | \( 1 + p T^{2} \) | 1.11.a |
| 13 | \( 1 - 2 T + p T^{2} \) | 1.13.ac |
| 17 | \( 1 + 4 T + p T^{2} \) | 1.17.e |
| 19 | \( 1 + p T^{2} \) | 1.19.a |
| 23 | \( 1 + p T^{2} \) | 1.23.a |
| 31 | \( 1 + p T^{2} \) | 1.31.a |
| 37 | \( 1 - 4 T + p T^{2} \) | 1.37.ae |
| 41 | \( 1 + 2 T + p T^{2} \) | 1.41.c |
| 43 | \( 1 + 2 T + p T^{2} \) | 1.43.c |
| 47 | \( 1 - 10 T + p T^{2} \) | 1.47.ak |
| 53 | \( 1 - 6 T + p T^{2} \) | 1.53.ag |
| 59 | \( 1 - 4 T + p T^{2} \) | 1.59.ae |
| 61 | \( 1 - 6 T + p T^{2} \) | 1.61.ag |
| 67 | \( 1 + p T^{2} \) | 1.67.a |
| 71 | \( 1 + 8 T + p T^{2} \) | 1.71.i |
| 73 | \( 1 - 8 T + p T^{2} \) | 1.73.ai |
| 79 | \( 1 + p T^{2} \) | 1.79.a |
| 83 | \( 1 - 8 T + p T^{2} \) | 1.83.ai |
| 89 | \( 1 - 14 T + p T^{2} \) | 1.89.ao |
| 97 | \( 1 - 4 T + p T^{2} \) | 1.97.ae |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.82079890495479562837247847722, −7.27739777411206411784024345965, −6.36788398869507872039672729275, −5.60700242583618116752955932203, −4.85134377056124920196551200124, −4.17721031928201196851487823607, −3.41817528737008268459457629551, −2.35479813084154708763285355293, −2.03875198641364373710104072858, −0.996657381013282201555666418605,
0.996657381013282201555666418605, 2.03875198641364373710104072858, 2.35479813084154708763285355293, 3.41817528737008268459457629551, 4.17721031928201196851487823607, 4.85134377056124920196551200124, 5.60700242583618116752955932203, 6.36788398869507872039672729275, 7.27739777411206411784024345965, 7.82079890495479562837247847722