Properties

Label 2-9225-1.1-c1-0-315
Degree $2$
Conductor $9225$
Sign $1$
Analytic cond. $73.6619$
Root an. cond. $8.58265$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 4·7-s − 3·8-s − 3·11-s − 2·13-s − 4·14-s − 16-s − 3·17-s − 6·19-s − 3·22-s − 4·23-s − 2·26-s + 4·28-s − 6·29-s − 3·31-s + 5·32-s − 3·34-s − 6·37-s − 6·38-s − 41-s − 5·43-s + 3·44-s − 4·46-s + 7·47-s + 9·49-s + 2·52-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 1.51·7-s − 1.06·8-s − 0.904·11-s − 0.554·13-s − 1.06·14-s − 1/4·16-s − 0.727·17-s − 1.37·19-s − 0.639·22-s − 0.834·23-s − 0.392·26-s + 0.755·28-s − 1.11·29-s − 0.538·31-s + 0.883·32-s − 0.514·34-s − 0.986·37-s − 0.973·38-s − 0.156·41-s − 0.762·43-s + 0.452·44-s − 0.589·46-s + 1.02·47-s + 9/7·49-s + 0.277·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9225\)    =    \(3^{2} \cdot 5^{2} \cdot 41\)
Sign: $1$
Analytic conductor: \(73.6619\)
Root analytic conductor: \(8.58265\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 9225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
41 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 6 T + p T^{2} \) 1.37.g
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.84453434348862534645963191293, −6.21991349221845952452333751657, −5.66229658075253023147174372152, −4.93114770470381338534535138791, −4.14825817067842689970052025400, −3.57867319204935335138993074405, −2.80057586577332264564523382934, −2.06037232312361280137635877425, 0, 0, 2.06037232312361280137635877425, 2.80057586577332264564523382934, 3.57867319204935335138993074405, 4.14825817067842689970052025400, 4.93114770470381338534535138791, 5.66229658075253023147174372152, 6.21991349221845952452333751657, 6.84453434348862534645963191293

Graph of the $Z$-function along the critical line