Properties

Label 2-9152-1.1-c1-0-194
Degree $2$
Conductor $9152$
Sign $-1$
Analytic cond. $73.0790$
Root an. cond. $8.54863$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 3·7-s − 2·9-s − 11-s − 13-s − 15-s + 3·17-s + 3·21-s + 4·23-s − 4·25-s − 5·27-s − 8·31-s − 33-s − 3·35-s + 7·37-s − 39-s − 8·41-s + 43-s + 2·45-s − 7·47-s + 2·49-s + 3·51-s + 6·53-s + 55-s − 10·59-s + 8·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1.13·7-s − 2/3·9-s − 0.301·11-s − 0.277·13-s − 0.258·15-s + 0.727·17-s + 0.654·21-s + 0.834·23-s − 4/5·25-s − 0.962·27-s − 1.43·31-s − 0.174·33-s − 0.507·35-s + 1.15·37-s − 0.160·39-s − 1.24·41-s + 0.152·43-s + 0.298·45-s − 1.02·47-s + 2/7·49-s + 0.420·51-s + 0.824·53-s + 0.134·55-s − 1.30·59-s + 1.02·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9152\)    =    \(2^{6} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(73.0790\)
Root analytic conductor: \(8.54863\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9152,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 + T \)
13 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.68841018431844673282410160755, −6.90698938499111254450545513162, −5.83475650794534987321119229155, −5.29710518067052618995715239101, −4.61445084287403233742781467464, −3.73853169386082124622793791060, −3.07613455484015371329987635123, −2.22228431697090480707132888876, −1.37464607858279854418184335965, 0, 1.37464607858279854418184335965, 2.22228431697090480707132888876, 3.07613455484015371329987635123, 3.73853169386082124622793791060, 4.61445084287403233742781467464, 5.29710518067052618995715239101, 5.83475650794534987321119229155, 6.90698938499111254450545513162, 7.68841018431844673282410160755

Graph of the $Z$-function along the critical line