L(s) = 1 | − 3-s + 9-s − 6·13-s − 4·17-s + 4·19-s + 6·23-s − 5·25-s − 27-s − 8·29-s − 4·31-s + 37-s + 6·39-s + 10·41-s − 8·43-s − 8·47-s − 7·49-s + 4·51-s − 6·53-s − 4·57-s + 2·59-s − 10·61-s − 12·67-s − 6·69-s − 8·71-s − 10·73-s + 5·75-s + 8·79-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s − 1.66·13-s − 0.970·17-s + 0.917·19-s + 1.25·23-s − 25-s − 0.192·27-s − 1.48·29-s − 0.718·31-s + 0.164·37-s + 0.960·39-s + 1.56·41-s − 1.21·43-s − 1.16·47-s − 49-s + 0.560·51-s − 0.824·53-s − 0.529·57-s + 0.260·59-s − 1.28·61-s − 1.46·67-s − 0.722·69-s − 0.949·71-s − 1.17·73-s + 0.577·75-s + 0.900·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 \) | |
| 3 | \( 1 + T \) | |
| 37 | \( 1 - T \) | |
good | 5 | \( 1 + p T^{2} \) | 1.5.a |
| 7 | \( 1 + p T^{2} \) | 1.7.a |
| 11 | \( 1 + p T^{2} \) | 1.11.a |
| 13 | \( 1 + 6 T + p T^{2} \) | 1.13.g |
| 17 | \( 1 + 4 T + p T^{2} \) | 1.17.e |
| 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae |
| 23 | \( 1 - 6 T + p T^{2} \) | 1.23.ag |
| 29 | \( 1 + 8 T + p T^{2} \) | 1.29.i |
| 31 | \( 1 + 4 T + p T^{2} \) | 1.31.e |
| 41 | \( 1 - 10 T + p T^{2} \) | 1.41.ak |
| 43 | \( 1 + 8 T + p T^{2} \) | 1.43.i |
| 47 | \( 1 + 8 T + p T^{2} \) | 1.47.i |
| 53 | \( 1 + 6 T + p T^{2} \) | 1.53.g |
| 59 | \( 1 - 2 T + p T^{2} \) | 1.59.ac |
| 61 | \( 1 + 10 T + p T^{2} \) | 1.61.k |
| 67 | \( 1 + 12 T + p T^{2} \) | 1.67.m |
| 71 | \( 1 + 8 T + p T^{2} \) | 1.71.i |
| 73 | \( 1 + 10 T + p T^{2} \) | 1.73.k |
| 79 | \( 1 - 8 T + p T^{2} \) | 1.79.ai |
| 83 | \( 1 - 8 T + p T^{2} \) | 1.83.ai |
| 89 | \( 1 - 16 T + p T^{2} \) | 1.89.aq |
| 97 | \( 1 - 6 T + p T^{2} \) | 1.97.ag |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.584600512033697452602094459136, −9.196844858741340923837333397363, −7.71640409639067127605483969231, −7.25241793871756877422183307200, −6.21189850282801776570340478043, −5.20847827453222755851603109619, −4.54318779623675984138666851276, −3.18349119950130811231073188709, −1.86744541243890810364944032487, 0,
1.86744541243890810364944032487, 3.18349119950130811231073188709, 4.54318779623675984138666851276, 5.20847827453222755851603109619, 6.21189850282801776570340478043, 7.25241793871756877422183307200, 7.71640409639067127605483969231, 9.196844858741340923837333397363, 9.584600512033697452602094459136