Properties

Label 2-888-1.1-c1-0-13
Degree $2$
Conductor $888$
Sign $-1$
Analytic cond. $7.09071$
Root an. cond. $2.66283$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 6·13-s − 4·17-s + 4·19-s + 6·23-s − 5·25-s − 27-s − 8·29-s − 4·31-s + 37-s + 6·39-s + 10·41-s − 8·43-s − 8·47-s − 7·49-s + 4·51-s − 6·53-s − 4·57-s + 2·59-s − 10·61-s − 12·67-s − 6·69-s − 8·71-s − 10·73-s + 5·75-s + 8·79-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 1.66·13-s − 0.970·17-s + 0.917·19-s + 1.25·23-s − 25-s − 0.192·27-s − 1.48·29-s − 0.718·31-s + 0.164·37-s + 0.960·39-s + 1.56·41-s − 1.21·43-s − 1.16·47-s − 49-s + 0.560·51-s − 0.824·53-s − 0.529·57-s + 0.260·59-s − 1.28·61-s − 1.46·67-s − 0.722·69-s − 0.949·71-s − 1.17·73-s + 0.577·75-s + 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(888\)    =    \(2^{3} \cdot 3 \cdot 37\)
Sign: $-1$
Analytic conductor: \(7.09071\)
Root analytic conductor: \(2.66283\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 888,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
37 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 4 T + p T^{2} \) 1.31.e
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.584600512033697452602094459136, −9.196844858741340923837333397363, −7.71640409639067127605483969231, −7.25241793871756877422183307200, −6.21189850282801776570340478043, −5.20847827453222755851603109619, −4.54318779623675984138666851276, −3.18349119950130811231073188709, −1.86744541243890810364944032487, 0, 1.86744541243890810364944032487, 3.18349119950130811231073188709, 4.54318779623675984138666851276, 5.20847827453222755851603109619, 6.21189850282801776570340478043, 7.25241793871756877422183307200, 7.71640409639067127605483969231, 9.196844858741340923837333397363, 9.584600512033697452602094459136

Graph of the $Z$-function along the critical line