L(s) = 1 | − 2-s + 3-s + 4-s − 2·5-s − 6-s + 4·7-s − 8-s + 9-s + 2·10-s + 11-s + 12-s + 13-s − 4·14-s − 2·15-s + 16-s − 18-s + 2·19-s − 2·20-s + 4·21-s − 22-s − 2·23-s − 24-s − 25-s − 26-s + 27-s + 4·28-s + 2·29-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s + 1.51·7-s − 0.353·8-s + 1/3·9-s + 0.632·10-s + 0.301·11-s + 0.288·12-s + 0.277·13-s − 1.06·14-s − 0.516·15-s + 1/4·16-s − 0.235·18-s + 0.458·19-s − 0.447·20-s + 0.872·21-s − 0.213·22-s − 0.417·23-s − 0.204·24-s − 1/5·25-s − 0.196·26-s + 0.192·27-s + 0.755·28-s + 0.371·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 858 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 858 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.453127238\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.453127238\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 + T \) | |
| 3 | \( 1 - T \) | |
| 11 | \( 1 - T \) | |
| 13 | \( 1 - T \) | |
good | 5 | \( 1 + 2 T + p T^{2} \) | 1.5.c |
| 7 | \( 1 - 4 T + p T^{2} \) | 1.7.ae |
| 17 | \( 1 + p T^{2} \) | 1.17.a |
| 19 | \( 1 - 2 T + p T^{2} \) | 1.19.ac |
| 23 | \( 1 + 2 T + p T^{2} \) | 1.23.c |
| 29 | \( 1 - 2 T + p T^{2} \) | 1.29.ac |
| 31 | \( 1 + 2 T + p T^{2} \) | 1.31.c |
| 37 | \( 1 - 12 T + p T^{2} \) | 1.37.am |
| 41 | \( 1 - 6 T + p T^{2} \) | 1.41.ag |
| 43 | \( 1 + p T^{2} \) | 1.43.a |
| 47 | \( 1 + p T^{2} \) | 1.47.a |
| 53 | \( 1 - 4 T + p T^{2} \) | 1.53.ae |
| 59 | \( 1 - 12 T + p T^{2} \) | 1.59.am |
| 61 | \( 1 + 6 T + p T^{2} \) | 1.61.g |
| 67 | \( 1 + 4 T + p T^{2} \) | 1.67.e |
| 71 | \( 1 - 4 T + p T^{2} \) | 1.71.ae |
| 73 | \( 1 - 4 T + p T^{2} \) | 1.73.ae |
| 79 | \( 1 + 8 T + p T^{2} \) | 1.79.i |
| 83 | \( 1 + 12 T + p T^{2} \) | 1.83.m |
| 89 | \( 1 - 10 T + p T^{2} \) | 1.89.ak |
| 97 | \( 1 - 2 T + p T^{2} \) | 1.97.ac |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09320901972773644071023695221, −9.152544900832661986520493990717, −8.334178218867313515586264447510, −7.84483833587686663019675491606, −7.22145722663894140529586056036, −5.89742135845964643100082998840, −4.61909487088661887368743599248, −3.78456007516452903356824957355, −2.39710476057858923991456495329, −1.14792334362833608769937749472,
1.14792334362833608769937749472, 2.39710476057858923991456495329, 3.78456007516452903356824957355, 4.61909487088661887368743599248, 5.89742135845964643100082998840, 7.22145722663894140529586056036, 7.84483833587686663019675491606, 8.334178218867313515586264447510, 9.152544900832661986520493990717, 10.09320901972773644071023695221