Properties

Label 2-8550-1.1-c1-0-52
Degree $2$
Conductor $8550$
Sign $1$
Analytic cond. $68.2720$
Root an. cond. $8.26269$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4·7-s − 8-s + 4·11-s + 6·13-s − 4·14-s + 16-s − 6·17-s − 19-s − 4·22-s + 4·23-s − 6·26-s + 4·28-s − 6·29-s − 8·31-s − 32-s + 6·34-s − 2·37-s + 38-s − 10·41-s + 8·43-s + 4·44-s − 4·46-s + 12·47-s + 9·49-s + 6·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.51·7-s − 0.353·8-s + 1.20·11-s + 1.66·13-s − 1.06·14-s + 1/4·16-s − 1.45·17-s − 0.229·19-s − 0.852·22-s + 0.834·23-s − 1.17·26-s + 0.755·28-s − 1.11·29-s − 1.43·31-s − 0.176·32-s + 1.02·34-s − 0.328·37-s + 0.162·38-s − 1.56·41-s + 1.21·43-s + 0.603·44-s − 0.589·46-s + 1.75·47-s + 9/7·49-s + 0.832·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8550\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(68.2720\)
Root analytic conductor: \(8.26269\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{8550} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.148209810\)
\(L(\frac12)\) \(\approx\) \(2.148209810\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 16 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.013745548134849687039261237633, −7.00124206579927964275182297659, −6.69922149458188066572624286892, −5.74262956677626990062236264129, −5.10564444641027336549584546184, −4.02173378191983997310108924575, −3.72016441642838448550397349657, −2.22906802971440979412846691852, −1.66384562243540249845230946187, −0.858118939074564005626241568249, 0.858118939074564005626241568249, 1.66384562243540249845230946187, 2.22906802971440979412846691852, 3.72016441642838448550397349657, 4.02173378191983997310108924575, 5.10564444641027336549584546184, 5.74262956677626990062236264129, 6.69922149458188066572624286892, 7.00124206579927964275182297659, 8.013745548134849687039261237633

Graph of the $Z$-function along the critical line