Properties

Label 2-8208-1.1-c1-0-118
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 7-s − 4·11-s − 3·13-s + 4·17-s − 19-s − 4·23-s + 4·25-s + 6·31-s − 3·35-s + 37-s − 5·41-s + 2·47-s − 6·49-s + 2·53-s − 12·55-s − 10·59-s + 2·61-s − 9·65-s + 12·67-s − 5·71-s + 7·73-s + 4·77-s − 10·79-s + 7·83-s + 12·85-s + 13·89-s + ⋯
L(s)  = 1  + 1.34·5-s − 0.377·7-s − 1.20·11-s − 0.832·13-s + 0.970·17-s − 0.229·19-s − 0.834·23-s + 4/5·25-s + 1.07·31-s − 0.507·35-s + 0.164·37-s − 0.780·41-s + 0.291·47-s − 6/7·49-s + 0.274·53-s − 1.61·55-s − 1.30·59-s + 0.256·61-s − 1.11·65-s + 1.46·67-s − 0.593·71-s + 0.819·73-s + 0.455·77-s − 1.12·79-s + 0.768·83-s + 1.30·85-s + 1.37·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59696751043267290119143799624, −6.57135455453658551617167329148, −6.13648532677140579958744272778, −5.28679021832354299011333699938, −5.00085972716244683353419500975, −3.84297471398396674405942497334, −2.79857744411560880003140089736, −2.37444494347776736142497194654, −1.38055365845120531923139519541, 0, 1.38055365845120531923139519541, 2.37444494347776736142497194654, 2.79857744411560880003140089736, 3.84297471398396674405942497334, 5.00085972716244683353419500975, 5.28679021832354299011333699938, 6.13648532677140579958744272778, 6.57135455453658551617167329148, 7.59696751043267290119143799624

Graph of the $Z$-function along the critical line