Properties

Label 2-8190-1.1-c1-0-83
Degree $2$
Conductor $8190$
Sign $-1$
Analytic cond. $65.3974$
Root an. cond. $8.08687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 7-s − 8-s − 10-s + 13-s + 14-s + 16-s − 4·17-s − 6·19-s + 20-s + 25-s − 26-s − 28-s + 6·29-s + 4·31-s − 32-s + 4·34-s − 35-s − 8·37-s + 6·38-s − 40-s + 2·41-s + 6·43-s + 10·47-s + 49-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.377·7-s − 0.353·8-s − 0.316·10-s + 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.970·17-s − 1.37·19-s + 0.223·20-s + 1/5·25-s − 0.196·26-s − 0.188·28-s + 1.11·29-s + 0.718·31-s − 0.176·32-s + 0.685·34-s − 0.169·35-s − 1.31·37-s + 0.973·38-s − 0.158·40-s + 0.312·41-s + 0.914·43-s + 1.45·47-s + 1/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8190\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(65.3974\)
Root analytic conductor: \(8.08687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8190,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.48919301543378268236009094915, −6.67001200400514998461131437340, −6.35832142593165731104405221796, −5.58369250511147231696408873723, −4.59553604464225747329684598584, −3.90687010515235259367548642118, −2.77624237097726961343072868023, −2.22915371909794712415784004590, −1.18405987245552524064844849436, 0, 1.18405987245552524064844849436, 2.22915371909794712415784004590, 2.77624237097726961343072868023, 3.90687010515235259367548642118, 4.59553604464225747329684598584, 5.58369250511147231696408873723, 6.35832142593165731104405221796, 6.67001200400514998461131437340, 7.48919301543378268236009094915

Graph of the $Z$-function along the critical line